## Bounding the projective dimension of a squarefree monomial ideal via domination in clutters

HTML articles powered by AMS MathViewer

- by Hailong Dao and Jay Schweig PDF
- Proc. Amer. Math. Soc.
**143**(2015), 555-565 Request permission

## Abstract:

We introduce the concept of edgewise domination in clutters and use it to provide an upper bound for the projective dimension of any squarefree monomial ideal. We then compare this bound to a bound given by Faltings. Finally, we study a family of clutters associated to graphs and compute domination parameters for certain classes of these clutters.## References

- Ron Aharoni, Eli Berger, and Ran Ziv,
*A tree version of Kőnig’s theorem*, Combinatorica**22**(2002), no. 3, 335–343. MR**1932057**, DOI 10.1007/s004930200016 - A. Alilooee and S. Faridi,
*Betti numbers of the path ideals of cycles and lines*, preprint. - Rachelle R. Bouchat, Huy Tài Hà, and Augustine O’Keefe,
*Path ideals of rooted trees and their graded Betti numbers*, J. Combin. Theory Ser. A**118**(2011), no. 8, 2411–2425. MR**2834183**, DOI 10.1016/j.jcta.2011.06.007 - Daniel Campos, Ryan Gunderson, Susan Morey, Chelsey Paulsen, and Thomas Polstra,
*Depths and Cohen-Macaulay properties of path ideals*, J. Pure Appl. Algebra**218**(2014), no. 8, 1537–1543. MR**3175038**, DOI 10.1016/j.jpaa.2013.12.005 - Aldo Conca and Emanuela De Negri,
*$M$-sequences, graph ideals, and ladder ideals of linear type*, J. Algebra**211**(1999), no. 2, 599–624. MR**1666661**, DOI 10.1006/jabr.1998.7740 - Hailong Dao and Jay Schweig,
*Projective dimension, graph domination parameters, and independence complex homology*, J. Combin. Theory Ser. A**120**(2013), no. 2, 453–469. MR**2995051**, DOI 10.1016/j.jcta.2012.09.005 - Hailong Dao, Craig Huneke, and Jay Schweig,
*Bounds on the regularity and projective dimension of ideals associated to graphs*, J. Algebraic Combin.**38**(2013), no. 1, 37–55. MR**3070118**, DOI 10.1007/s10801-012-0391-z - G. A. Dirac,
*On rigid circuit graphs*, Abh. Math. Sem. Univ. Hamburg**25**(1961), 71–76. MR**130190**, DOI 10.1007/BF02992776 - Anton Dochtermann and Alexander Engström,
*Algebraic properties of edge ideals via combinatorial topology*, Electron. J. Combin.**16**(2009), no. 2, Special volume in honor of Anders Björner, Research Paper 2, 24. MR**2515765** - Gerd Faltings,
*Über lokale Kohomologiegruppen hoher Ordnung*, J. Reine Angew. Math.**313**(1980), 43–51 (German). MR**552461**, DOI 10.1515/crll.1980.313.43 - Huy Tài Hà and Adam Van Tuyl,
*Monomial ideals, edge ideals of hypergraphs, and their graded Betti numbers*, J. Algebraic Combin.**27**(2008), no. 2, 215–245. MR**2375493**, DOI 10.1007/s10801-007-0079-y - Jing He and Adam Van Tuyl,
*Algebraic properties of the path ideal of a tree*, Comm. Algebra**38**(2010), no. 5, 1725–1742. MR**2642022**, DOI 10.1080/00927870902998166 - Kuei-Nuan Lin and Jason McCullough,
*Hypergraphs and regularity of square-free monomial ideals*, Internat. J. Algebra Comput.**23**(2013), no. 7, 1573–1590. MR**3143595**, DOI 10.1142/S0218196713500379 - Anurag K. Singh and Uli Walther,
*Local cohomology and pure morphisms*, Illinois J. Math.**51**(2007), no. 1, 287–298. MR**2346198** - Tibor Szabó and Gábor Tardos,
*Extremal problems for transversals in graphs with bounded degree*, Combinatorica**26**(2006), no. 3, 333–351. MR**2246152**, DOI 10.1007/s00493-006-0019-9 - Russ Woodroofe,
*Chordal and sequentially Cohen-Macaulay clutters*, Electron. J. Combin.**18**(2011), no. 1, Paper 208, 20. MR**2853065**

## Additional Information

**Hailong Dao**- Affiliation: Department of Mathematics, University of Kansas, 1460 Jayhawk, Lawrence, Kansas 66045
- MR Author ID: 828268
**Jay Schweig**- Affiliation: Department of Mathematics, 401 MSCS, Oklahoma State University, Stillwater, Oklahoma 74075
- MR Author ID: 702558
- Received by editor(s): February 17, 2013
- Received by editor(s) in revised form: March 27, 2013, and May 29, 2013
- Published electronically: October 10, 2014
- Additional Notes: The first author was partially supported by NSF grants DMS 0834050 and DMS 1104017
- Communicated by: Irena Peeva
- © Copyright 2014 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**143**(2015), 555-565 - MSC (2010): Primary 05C10, 05C65, 05C69, 13D02, 05E45
- DOI: https://doi.org/10.1090/S0002-9939-2014-12374-4
- MathSciNet review: 3283644