On the Gaussian behavior of marginals and the mean width of random polytopes
HTML articles powered by AMS MathViewer
- by David Alonso-Gutiérrez and Joscha Prochno
- Proc. Amer. Math. Soc. 143 (2015), 821-832
- DOI: https://doi.org/10.1090/S0002-9939-2014-12401-4
- Published electronically: November 3, 2014
- PDF | Request permission
Abstract:
We show that the expected value of the mean width of a random polytope generated by $N$ random vectors ($n\leq N\leq e^{\sqrt n}$) uniformly distributed in an isotropic convex body in $\mathbb {R}^n$ is of the order $\sqrt {\log N} L_K$. This completes a result of Dafnis, Giannopoulos and Tsolomitis. We also prove some results in connection with the 1-dimensional marginals of the uniform probability measure on an isotropic convex body, extending the interval in which the average of the distribution functions of those marginals behaves in a sub- or supergaussian way.References
- David Alonso-Gutiérrez and Joscha Prochno, Estimating support functions of random polytopes via Orlicz norms, Discrete Comput. Geom. 49 (2013), no. 3, 558–588. MR 3038530, DOI 10.1007/s00454-012-9468-7
- Milla Anttila, Keith Ball, and Irini Perissinaki, The central limit problem for convex bodies, Trans. Amer. Math. Soc. 355 (2003), no. 12, 4723–4735. MR 1997580, DOI 10.1090/S0002-9947-03-03085-X
- Imre Bárány, Random polytopes, convex bodies, and approximation, Stochastic geometry, Lecture Notes in Math., vol. 1892, Springer, Berlin, 2007, pp. 77–118. MR 2327291, DOI 10.1007/978-3-540-38175-4_{2}
- Jesús Bastero and Julio Bernués, Asymptotic behaviour of averages of $k$-dimensional marginals of measures on $\Bbb R^n$, Studia Math. 190 (2009), no. 1, 1–31. MR 2457285, DOI 10.4064/sm190-1-1
- S. G. Bobkov, On concentration of distributions of random weighted sums, Ann. Probab. 31 (2003), no. 1, 195–215. MR 1959791, DOI 10.1214/aop/1046294309
- S. G. Bobkov and A. Koldobsky, On the central limit property of convex bodies, Geometric aspects of functional analysis, Lecture Notes in Math., vol. 1807, Springer, Berlin, 2003, pp. 44–52. MR 2083387, DOI 10.1007/978-3-540-36428-3_{5}
- S. G. Bobkov and F. L. Nazarov, On convex bodies and log-concave probability measures with unconditional basis, Geometric aspects of functional analysis, Lecture Notes in Math., vol. 1807, Springer, Berlin, 2003, pp. 53–69. MR 2083388, DOI 10.1007/978-3-540-36428-3_{6}
- Sergey G. Bobkov and Fedor L. Nazarov, Large deviations of typical linear functionals on a convex body with unconditional basis, Stochastic inequalities and applications, Progr. Probab., vol. 56, Birkhäuser, Basel, 2003, pp. 3–13. MR 2073422
- J. Bourgain, On high-dimensional maximal functions associated to convex bodies, Amer. J. Math. 108 (1986), no. 6, 1467–1476. MR 868898, DOI 10.2307/2374532
- J. Bourgain, On the isotropy-constant problem for “PSI-2”-bodies, Geometric aspects of functional analysis, Lecture Notes in Math., vol. 1807, Springer, Berlin, 2003, pp. 114–121. MR 2083391, DOI 10.1007/978-3-540-36428-3_{9}
- N. Dafnis, A. Giannopoulos, and A. Tsolomitis, Asymptotic shape of a random polytope in a convex body, J. Funct. Anal. 257 (2009), no. 9, 2820–2839. MR 2559718, DOI 10.1016/j.jfa.2009.06.027
- N. Dafnis, A. Giannopoulos, and A. Tsolomitis, Quermaßintegrals and asymptotic shape of random polytopes in an isotropic convex body, Michigan Math. J. 62 (2013), no. 1, 59–79. MR 3049297, DOI 10.1307/mmj/1363958241
- A. Giannopoulos, G. Paouris, and P. Valettas, On the existence of subgaussian directions for log-concave measures, Concentration, functional inequalities and isoperimetry, Contemp. Math., vol. 545, Amer. Math. Soc., Providence, RI, 2011, pp. 103–122. MR 2858469, DOI 10.1090/conm/545/10768
- E. D. Gluskin, The diameter of the Minkowski compactum is roughly equal to $n$, Funktsional. Anal. i Prilozhen. 15 (1981), no. 1, 72–73 (Russian). MR 609798
- E. D. Gluskin, A. E. Litvak, and N. Tomczak-Jaegermann, An example of a convex body without symmetric projections, Israel J. Math. 124 (2001), 267–277. MR 1856519, DOI 10.1007/BF02772622
- Douglas Hensley, Slicing convex bodies—bounds for slice area in terms of the body’s covariance, Proc. Amer. Math. Soc. 79 (1980), no. 4, 619–625. MR 572315, DOI 10.1090/S0002-9939-1980-0572315-5
- Bo’az Klartag, On nearly radial marginals of high-dimensional probability measures, J. Eur. Math. Soc. (JEMS) 12 (2010), no. 3, 723–754. MR 2639317, DOI 10.4171/JEMS/213
- B. Klartag, Uniform almost sub-Gaussian estimates for linear functionals on convex sets, Algebra i Analiz 19 (2007), no. 1, 109–148; English transl., St. Petersburg Math. J. 19 (2008), no. 1, 77–106. MR 2319512, DOI 10.1090/S1061-0022-07-00987-9
- B. Klartag, Power-law estimates for the central limit theorem for convex sets, J. Funct. Anal. 245 (2007), no. 1, 284–310. MR 2311626, DOI 10.1016/j.jfa.2006.12.005
- Bo’az Klartag and Gady Kozma, On the hyperplane conjecture for random convex sets, Israel J. Math. 170 (2009), 253–268. MR 2506326, DOI 10.1007/s11856-009-0028-7
- M. A. Krasnosel′skiĭ and Ja. B. Rutickiĭ, Convex functions and Orlicz spaces, P. Noordhoff Ltd., Groningen, 1961. Translated from the first Russian edition by Leo F. Boron. MR 0126722
- V. D. Milman and A. Pajor, Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed $n$-dimensional space, Geometric aspects of functional analysis (1987–88), Lecture Notes in Math., vol. 1376, Springer, Berlin, 1989, pp. 64–104. MR 1008717, DOI 10.1007/BFb0090049
- Fedor Nazarov, On the maximal perimeter of a convex set in ${\Bbb R}^n$ with respect to a Gaussian measure, Geometric aspects of functional analysis, Lecture Notes in Math., vol. 1807, Springer, Berlin, 2003, pp. 169–187. MR 2083397, DOI 10.1007/978-3-540-36428-3_{1}5
- G. Paouris, Concentration of mass on convex bodies, Geom. Funct. Anal. 16 (2006), no. 5, 1021–1049. MR 2276533, DOI 10.1007/s00039-006-0584-5
- Grigoris Paouris, Small ball probability estimates for log-concave measures, Trans. Amer. Math. Soc. 364 (2012), no. 1, 287–308. MR 2833584, DOI 10.1090/S0002-9947-2011-05411-5
- G. Paouris, $\Psi _2$-estimates for linear functionals on zonoids, Geometric aspects of functional analysis, Lecture Notes in Math., vol. 1807, Springer, Berlin, 2003, pp. 211–222. MR 2083399, DOI 10.1007/978-3-540-36428-3_{1}7
- G. Paouris, On the $\psi _2$-behaviour of linear functionals on isotropic convex bodies, Studia Math. 168 (2005), no. 3, 285–299. MR 2146128, DOI 10.4064/sm168-3-7
- Grigoris Paouris, On the existence of supergaussian directions on convex bodies, Mathematika 58 (2012), no. 2, 389–408. MR 2965979, DOI 10.1112/S0025579311006085
- Grigoris Paouris and Peter Pivovarov, A probabilistic take on isoperimetric-type inequalities, Adv. Math. 230 (2012), no. 3, 1402–1422. MR 2921184, DOI 10.1016/j.aim.2012.03.019
- Peter Pivovarov, On the volume of caps and bounding the mean-width of an isotropic convex body, Math. Proc. Cambridge Philos. Soc. 149 (2010), no. 2, 317–331. MR 2670218, DOI 10.1017/S0305004110000216
- M. M. Rao and Z. D. Ren, Theory of Orlicz spaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 146, Marcel Dekker, Inc., New York, 1991. MR 1113700
- Matthias Reitzner, Random polytopes, New perspectives in stochastic geometry, Oxford Univ. Press, Oxford, 2010, pp. 45–76. MR 2654675
- S. Sodin, Tail-sensitive Gaussian asymptotics for marginals of concentrated measures in high dimension, Geometric aspects of functional analysis, Lecture Notes in Math., vol. 1910, Springer, Berlin, 2007, pp. 271–295. MR 2349613, DOI 10.1007/978-3-540-72053-9_{1}6
- Stanisław J. Szarek, The finite-dimensional basis problem with an appendix on nets of Grassmann manifolds, Acta Math. 151 (1983), no. 3-4, 153–179. MR 723008, DOI 10.1007/BF02393205
Bibliographic Information
- David Alonso-Gutiérrez
- Affiliation: Department of Mathematical and Statistical Sciences, University of Alberta, 505 Central Academic Building, Edmonton T6G 2G1, Canada
- Address at time of publication: Departament de Matemàtiques, Universitat Jaume I, Campus de Riu Sec, E-12071 Castelló de la Plana, Spain
- MR Author ID: 840424
- Email: alonsod@uji.es
- Joscha Prochno
- Affiliation: Department of Mathematical and Statistical Sciences, University of Alberta, 605 Central Academic Building, Edmonton T6G 2G1, Canada
- Address at time of publication: Institute of Analysis, Johannes Keples University, Liuz Altunbergerstr. 69, 4040 Liuz, Austria
- MR Author ID: 997160
- Email: prochno@ualberta.ca
- Received by editor(s): May 28, 2012
- Received by editor(s) in revised form: March 22, 2013
- Published electronically: November 3, 2014
- Communicated by: David Levin
- © Copyright 2014 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 143 (2015), 821-832
- MSC (2010): Primary 52A22; Secondary 52A23, 05D40, 46B09
- DOI: https://doi.org/10.1090/S0002-9939-2014-12401-4
- MathSciNet review: 3283668