On the $p$-adic Second Main Theorem
HTML articles powered by AMS MathViewer
- by Aaron Levin PDF
- Proc. Amer. Math. Soc. 143 (2015), 633-640 Request permission
Abstract:
We study the Second Main Theorem in non-archimedean Nevanlinna theory, giving an improvement to the non-archimedean Second Main Theorems of Ru and An in the case where all the hypersurfaces have degree greater than one and all intersections are transverse. In particular, under a transversality assumption, if $f$ is a nonconstant non-archimedean analytic map to $\mathbb {P}^n$ and $D_1,\ldots , D_q$ are hypersurfaces of degree $d$, we prove the defect relation \begin{equation*} \sum _{i=1}^q\delta _f(D_i)\leq n-1+\frac {1}{d}, \end{equation*} which is sharp for all positive integers $n$ and $d$.References
- Ta Thi Hoai An, A defect relation for non-Archimedean analytic curves in arbitrary projective varieties, Proc. Amer. Math. Soc. 135 (2007), no. 5, 1255–1261. MR 2276632, DOI 10.1090/S0002-9939-06-08591-1
- Ta Thi Hoai An, Julie Tzu-Yueh Wang, and Pit-Mann Wong, Non-Archimedean analytic curves in the complements of hypersurface divisors, J. Number Theory 128 (2008), no. 8, 2275–2281. MR 2394821, DOI 10.1016/j.jnt.2007.10.011
- A. Boutabaa, Sur la théorie de Nevanlinna $p$-adique, Thése de Doctorat, Université Paris 7, 1991.
- Abdelbaki Boutabaa, Sur les courbes holomorphes $p$-adiques, Ann. Fac. Sci. Toulouse Math. (6) 5 (1996), no. 1, 29–52 (French, with English and French summaries). MR 1413843
- H. Cartan, Sur les zeros des combinaisions linearires de $p$ fonctions holomorpes donnees, Mathematica 7 (1933).
- William Cherry and Zhuan Ye, Non-Archimedean Nevanlinna theory in several variables and the non-Archimedean Nevanlinna inverse problem, Trans. Amer. Math. Soc. 349 (1997), no. 12, 5043–5071. MR 1407485, DOI 10.1090/S0002-9947-97-01874-6
- A. È. Erëmenko and M. L. Sodin, Distribution of values of meromorphic functions and meromorphic curves from the standpoint of potential theory, Algebra i Analiz 3 (1991), no. 1, 131–164 (Russian); English transl., St. Petersburg Math. J. 3 (1992), no. 1, 109–136. MR 1120844
- Ha Huy Khoai and Mai Van Tu, $p$-adic Nevanlinna-Cartan theorem, Internat. J. Math. 6 (1995), no. 5, 719–731. MR 1351163, DOI 10.1142/S0129167X95000304
- Min Ru, A note on $p$-adic Nevanlinna theory, Proc. Amer. Math. Soc. 129 (2001), no. 5, 1263–1269. MR 1712881, DOI 10.1090/S0002-9939-00-05680-X
- Min Ru, A defect relation for holomorphic curves intersecting hypersurfaces, Amer. J. Math. 126 (2004), no. 1, 215–226. MR 2033568
- Min Ru, Holomorphic curves into algebraic varieties, Ann. of Math. (2) 169 (2009), no. 1, 255–267. MR 2480605, DOI 10.4007/annals.2009.169.255
Additional Information
- Aaron Levin
- Affiliation: Department of Mathematics, Michigan State University, East Lansing, Michigan 48824
- MR Author ID: 775832
- Email: adlevin@math.msu.edu
- Received by editor(s): April 14, 2013
- Published electronically: October 3, 2014
- Communicated by: Ken Ono
- © Copyright 2014 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 143 (2015), 633-640
- MSC (2010): Primary 32P05; Secondary 32H30, 11J97
- DOI: https://doi.org/10.1090/S0002-9939-2014-12530-5
- MathSciNet review: 3283650