Caccioppoli Estimates Through an Anisotropic Picone’s Identity

JAROSLAV JAROŠ

(Communicated by Lei Ni)

Abstract. Caccioppoli-type estimates for a class of nonlinear differential operators which include the p-Laplacian and the pseudo p-Laplacian as special cases are obtained by means of the differential identity involving an arbitrary norm in \mathbb{R}^n which generalizes the well-known multidimensional Picone’s formula.

1. Introduction

One of the alternative ways to establish the basic Caccioppoli inequality in which the L^2 norm of the gradient of a harmonic (or subharmonic) function v is estimated in terms of the L^2 norm of v itself is to derive it from the Picone identity (see [15] or [17])

\begin{equation}
\|\nabla u\|^2 - \langle \nabla \left(\frac{u^2}{v} \right), \nabla v \rangle = \|\nabla u - \frac{u}{v} \nabla v\|^2,
\end{equation}

where u and v are differentiable functions on a given domain $\Omega \subset \mathbb{R}^n$ with $v(x) \neq 0$ in Ω and $\|\cdot\|_2$, ∇ and $\langle \cdot, \cdot \rangle$ stand for the Euclidean norm, the usual gradient and the inner product in \mathbb{R}^n, respectively.

Indeed, if $v > 0$ is a weak (continuous) solution of $\text{div} (\nabla v) = 0$ in Ω and $\eta \in C^\infty_c(\Omega)$ is a nonnegative test function, then from the integrated form of (1.1) with $u = \eta v$, using Young’s and the Cauchy-Schwartz inequality, we easily obtain

\begin{equation}
0 = \int_\Omega \|\eta \nabla v\|^2 dx - 2 \int_\Omega \langle \eta \nabla v, \nabla (\eta v) \rangle dx \leq -\frac{1}{2} \int_\Omega \|\eta \nabla v\|^2 dx + 2 \int_\Omega \|v \nabla \eta\|^2 dx,
\end{equation}

which yields the desired estimate

\begin{equation}
\int_\Omega \|\eta \nabla v\|^2 dx \leq 4 \int_\Omega \|v \nabla \eta\|^2 dx.
\end{equation}

More generally, if $p > 1$ is fixed and $v > 0$ is a weak continuous solution (or subsolution) of the p-harmonic equation $\text{div}(\|\nabla v\|^{p-2}_2 \nabla v) = 0$, then the L^p-version of the Caccioppoli estimate ([11]; see also the inequality (5.27) in [16] and Corollary A.6 in [13])

\begin{equation}
\int_\Omega \|\eta \nabla v\|^p dx \leq p \int_\Omega \|v \nabla \eta\|^p dx
\end{equation}

Received by the editors March 15, 2013 and in revised form, May 31, 2013.

2010 Mathematics Subject Classification. Primary 35J60.

Key words and phrases. Picone identity, Caccioppoli inequality.
can easily be obtained from the p-Laplacian generalization of Picone’s identity (see [2] and [9])

\begin{equation}
\|\nabla u\|^p_2 - \left\langle \nabla \left(\frac{|u|^p}{vp-1} \right), \|\nabla v\|^p_2 - \frac{2}{p-1} \langle \nabla u, \|\nabla v\|^p_2 \rangle \right\rangle = \Phi_p(u, v),
\end{equation}

where

\begin{equation}
\Phi_p(u, v) := \|\nabla u\|^p_2 + (p - 1)\frac{|u|^p}{vp-1} \|\nabla v\|^p_2 - p\frac{|u|^{p-2}u}{vp-1} \langle \nabla u, \|\nabla v\|^{p-2} \rangle \geq 0,
\end{equation}

by setting $u = \eta v$ and making use of Young’s and the Hölder inequality.

The purpose of this paper is to extend the Caccioppoli inequality to a class of differential operators of the form

\begin{equation}
\Delta_{H,p} v := \text{div} \left(H(\nabla v)^{p-1} \nabla \xi H(\nabla v) \right)
\end{equation}

where $p > 1$, $H : \mathbb{R}^n \to [0, +\infty)$, $n \geq 2$, is a convex function of the class $C^1(\mathbb{R}^n \backslash \{0\})$ which is positively homogeneous of degree 1 and ∇ and $\nabla \xi$ stand for usual gradient operators with respect to the variables x and ξ, respectively. We refer to the operator $\Delta_{H,p}$ as the Finsler p-Laplacian (or the anisotropic p-Laplacian). A prototype of H satisfying the above conditions is the l_r-norm

\begin{equation}
H(\xi) = \|\xi\|_r = \left(\sum_{i=1}^{n} |\xi_i|^{r} \right)^{1/r}, \quad r > 1,
\end{equation}

for which the operator defined by (1.6) has the form

\begin{equation}
\Delta_{r,p} v := \text{div} \left(\|\nabla v\|^{p-r} \nabla^r v \right)
\end{equation}

where

\begin{equation}
\nabla^r v := \left(\left| \frac{\partial v}{\partial x_1} \right|^{r-2} \frac{\partial v}{\partial x_1}, \ldots, \left| \frac{\partial v}{\partial x_n} \right|^{r-2} \frac{\partial v}{\partial x_n} \right).
\end{equation}

The class of operators of the form (1.8) includes the usual p-Laplacian and the so-called pseudo p-Laplace operator as the special cases corresponding to $r = 2$ and $p \in (1, \infty)$, and $r = p > 1$, respectively. Clearly, if $p = r = 2$, then (1.8) reduces to the standard Laplacian Δ.

Anisotropic elliptic problems involving this kind of operator and related questions have recently been studied in several papers including [1], [3]–[8], [10] and [18]–[20].

Our main result in this note is Theorem 3.1 below which states that if $v > 0$ is a weak subsolution in Ω of the equation

$$-\Delta_{H,p} v = g(x)|v|^{p-2}v,$$

where $0 \leq g \in L_\text{loc}^\infty(\Omega)$, then, for any fixed $q > p - 1$ and $w = v^{q/p}$, the inequality

$$\int_{\Omega} H(\eta \nabla w)^p dx \leq \left(\frac{q}{q - p + 1} \right)^p \int_{\Omega} H(w \nabla \eta)^p dx + \frac{q^{p-1}}{q - p + 1} \int_{\Omega} g(x)w^p \eta^p dx$$

holds for any nonnegative function $\eta \in C^\infty_0(\Omega)$. Analogous result is valid also for positive supersolutions of the above equation and $q < p - 1$.

The paper is organized as follows. Section 2 contains a brief review of the basic properties of general norms in \mathbb{R}^n that will be used in the sequel. Here we also present an extension of Picone’s identity to the Finsler p-Laplacian. In Section 3 we establish Caccioppoli-type estimates for positive sub- and supersolutions of nonlinear equations involving anisotropic elliptic operators.
2. Background

We begin by recalling basic properties of general norms in \(\mathbb{R}^n \) and their duals. For the proofs see [5] or [6].

Let \(H \) be an arbitrary norm in \(\mathbb{R}^n \), i.e., a convex function \(H : \mathbb{R}^n \to [0, \infty) \) satisfying \(H(\xi) > 0 \) for all \(\xi \neq 0 \) which is positively homogeneous of degree 1, so that

\[
H(t\xi) = |t|H(\xi) \quad \text{for all } \xi \in \mathbb{R}^n \text{ and } t \in \mathbb{R}.
\]

If we assume that \(H \in C^1(\mathbb{R}^n \setminus \{0\}) \), then from (2.1) it follows that

\[
\nabla_\xi H(t\xi) = \text{sgn } t \nabla_\xi H(\xi) \quad \text{for all } \xi \neq 0 \text{ and } t \neq 0
\]

and

\[
\langle \xi, \nabla_\xi H(\xi) \rangle = H(\xi) \quad \text{for all } \xi \in \mathbb{R}^n
\]

where the left-hand side is defined to be 0 if \(\xi = 0 \). Let \(\langle \cdot, \cdot \rangle \) denote the usual inner product in \(\mathbb{R}^n \) and define the dual norm \(H_0 \) of \(H \) by

\[
H_0(x) = \sup_{\xi \neq 0} \frac{\langle x, \xi \rangle}{H(\xi)} \quad \text{for } x \in \mathbb{R}^n.
\]

The \(H_0 \)-unit-ball, i.e., the set \(\{ x \in \mathbb{R}^n : H_0(x) \leq 1 \} \) is sometimes called the Wulff shape (or equilibrium crystal shape) of \(H \).

Any norm \(H \) of the class \(C^1 \) for \(\xi \neq 0 \) and its dual \(H_0 \) satisfy

\[
H_0(\nabla_\xi H(\xi)) = 1 \quad \text{for all } \xi \in \mathbb{R}^n \setminus \{0\}.
\]

Similarly, if \(H_0 \) is continuously differentiable for \(x \neq 0 \), then

\[
H(\nabla H_0(x)) = 1 \quad \text{for all } x \in \mathbb{R}^n \setminus \{0\}.
\]

Also, the identities

\[
H\left[H_0(x)\nabla H_0(x)\right] \nabla_\xi H\left[H_0(x)\nabla H_0(x)\right] = x
\]

and

\[
H_0\left[H(\xi)\nabla_\xi H(\xi)\right] \nabla H_0\left[H(\xi)\nabla_\xi H(\xi)\right] = \xi
\]

hold for all \(x, \xi \in \mathbb{R}^n \), where \(H(0)\nabla_\xi H(0) \) and \(H_0(0)\nabla H_0(0) \) are defined to be 0.

From the definition (2.4) we easily obtain the Hölder-type inequality

\[
\langle x, \xi \rangle \leq H(\xi)H_0(x) \quad \text{for all } x, \xi \in \mathbb{R}^n
\]

with equality holding if and only if

\[
x = H(\xi)\nabla_\xi H(\xi) \quad \text{(or, equivalently, } H_0(x) = H(\xi)).
\]

It is well known that a continuously differentiable function \(F \) defined in an open convex subset of \(\mathbb{R}^n \) is strictly convex if and only if

\[
F(y) - F(x) - \langle \nabla F(x), y - x \rangle > 0
\]

for all \(x \neq y \) (see, for example, [14]). As an immediate consequence of this result we have the following simple lemma.

Lemma 2.1. Let \(H \) be a norm in \(\mathbb{R}^n \) such that \(H \in C^1(\mathbb{R}^n \setminus \{0\}) \) and \(H^p, 1 < p < \infty \), is strictly convex. If

\[
H(\xi)^p + (p-1)H(\eta)^p - p\langle \xi, H(\eta)^{p-1}\nabla H(\eta) \rangle = 0
\]

for some \(\xi, \eta \in \mathbb{R}^n, \eta \neq 0, \) and \(H(\xi) = H(\eta), \) then \(\xi = \eta. \)
Proof. If $\xi, \eta \in \mathbb{R}^n$ with $\eta \neq 0$ satisfy $H(\xi) = H(\eta)$ and (2.12), then
\[
(2.13) \quad 0 = pH(\eta)^p - p\langle \eta, H(\eta)^{p-1}\nabla H(\eta) \rangle + p\langle \eta - \xi, H(\eta)^{p-1}\nabla H(\eta) \rangle
= p\langle \eta - \xi, H(\eta)^{p-1}\nabla H(\eta) \rangle.
\]
We claim that $pH(\eta)^{p-1}\nabla H(\eta) = \nabla(H(\eta))^p \neq 0$. Indeed, if $\nabla(H(\eta))^p$ were the zero vector for some $\eta \in \mathbb{R}^n$, i.e., even strictly convex function $H(\eta)^p$ attained its global minimum at η, then η would necessarily be equal to 0, a contradiction. Therefore, by strict convexity of H^p, $\xi = \eta$, and the proof is complete. \quad \Box

Next, we present a generalization of Picone’s identity for the Finsler p-Laplacian $\Delta_{H,p}$.

Lemma 2.2. Let H be an arbitrary norm in \mathbb{R}^n which is of class C^1 for $x \neq 0$. Assume that $u, v \in W^{1,p}_p(\Omega) \cap C(\Omega)$ with $v(x) \neq 0$ in Ω and denote
\[
\Phi(u, v) := H(\nabla u)^p + (p-1) \frac{|u|^p}{|v|^p} H(\nabla v)^p - p \frac{|u|^{p-2}u}{|v|^{p-2}v} \langle \nabla u, H(\nabla v)^{p-1}\nabla \xi H(\nabla v) \rangle.
\]
Then
\[
(2.14) \quad H(\nabla u)^p - \langle \nabla \left(\frac{|u|^p}{|v|^{p-2}v} \right), H(\nabla v)^{p-1}\nabla \xi H(\nabla v) \rangle = \Phi(u, v)
\]
and $\Phi(u, v) \geq 0$ a.e. in Ω. If, in addition, $H(\xi)^p$ is strictly convex in \mathbb{R}^n, then $\Phi(u, v) = 0$ a.e. in Ω if and only if u is a constant multiple of v in Ω.

Proof. First, verify (2.14) directly by expanding the left-hand side of (2.14). Next, notice that $\Phi(u, v) = \Phi_1(u, v) + \Phi_2(u, v)$, where
\[
\Phi_1(u, v) := H(\nabla u)^p - pH(\nabla u)H\left(\frac{u}{v}\nabla v\right)^{p-1} + (p-1)H\left(\frac{u}{v}\nabla v\right)^p
\]
and
\[
\Phi_2(u, v) := p[H(\nabla u)H\left(\frac{u}{v}\nabla v\right)^{p-1} - \langle \nabla u, H\left(\frac{u}{v}\nabla v\right)^{p-1}\nabla \xi H\left(\frac{u}{v}\nabla v\right) \rangle],
\]
and apply the Young inequality to Φ_1 and the generalized Hölder inequality (2.9) to Φ_2 to conclude that both $\Phi_1(u, v) \geq 0$ and $\Phi_2(u, v) \geq 0$.

Finally, $\Phi(u, v) = 0$ means that equality case simultaneously occurs in the Young inequality and the Hölder inequality (2.9) a.e. in Ω. A necessary and sufficient condition for the first equality is that
\[
(2.15) \quad H(\nabla u) = H\left(\frac{u}{v}\nabla v\right) \quad \text{a.e. in } \Omega.
\]

If $(u\nabla v/v)(x_0) \neq 0$ for some $x_0 \in S := \{x \in \Omega : \Phi(u, v) = 0\}$, then by Lemma 2.1 we have $\nabla u = u \nabla v/v$ at x_0, or, equivalently, $\nabla(u/v)(x_0) = 0$. On the other hand, if $u\nabla v/v = 0$ on some subset S_0 of S, then $\nabla u = 0$ a.e. in S_0 which implies $\nabla(u/v) = 0$ a.e. in S_0. Summarizing the above facts we get $\nabla(u/v) = 0$ a.e. in Ω which forces u/v to be constant in Ω. \quad \Box

Remark 2.1. In the special case where H is an l_r-norm, $r \in (1, \infty)$, the differential identity (2.14) reduces to
\[
(2.16) \quad \|\nabla u\|_r^p - \left\langle \nabla \left(\frac{|u|^p}{|v|^{p-2}v} \right), \|\nabla v\|_r^{p-r}\nabla v \right\rangle = \Phi_{p,r}(u, v),
\]
where $\nabla^r v$ is defined in (1.9) and

$$(2.17) \quad \Phi_{p,r}(u,v) := \|\nabla u\|_p^p + (p-1)\frac{|u|^p}{|v|^p} \|\nabla v\|_p^p - p \frac{|u|^{p-2}u}{|v|^{p-2}v} \langle \nabla u, \|\nabla v\|_p^{p-r} \nabla^r v \rangle \geq 0.$$

3. Caccioppoli-type estimates

Consider the equation

$$(3.1) \quad -\Delta_{H,p} v = g(x)|v|^{p-2}v,$$

where $0 \leq g \in L^\infty_{locc}(\Omega)$. Following the classical terminology, we will say that a continuous function $v \in W^{1,p}_{loc}(\Omega)$ is a weak solution of (3.1), if for any function $\eta \in W^{1,p}_{c}(\Omega) \cap C(\Omega)$ we have

$$(3.2) \quad \int_{\Omega} H(\nabla v)^{p-1} \langle \nabla_\xi H(\nabla v), \nabla \eta \rangle \, dx = \int_{\Omega} g|v|^{p-2}v\eta \, dx.$$

Here $W^{1,p}_{c}(\Omega)$ is used to denote the set of all functions $u \in W^{1,p}_{locc}(\Omega)$ which are compactly supported in Ω.

Weak subsolutions and supersolutions of (3.1) are defined analogously with test functions $\eta \in W^{1,p}_{c}(\Omega) \cap C(\Omega)$ satisfying $\eta \geq 0$ and “=” in (3.2) replaced by “\leq” and “\geq”, respectively.

We associate with (3.1) the homogeneous (of degree p) functional

$$(3.3) \quad J_H(u;\Omega) := \int_{\Omega} [H(\nabla u)^p - g(x)|u|^p] \, dx, \quad u \in W^{1,p}_{c}(\Omega) \cap C(\Omega).$$

If $v(x) > 0$ is a (continuous) weak subsolution of (3.1) in Ω and $u \in W^{1,p}_{c}(\Omega) \cap C(\Omega)$, then we can choose

$$\eta = \frac{|u|^p}{v^{p-1}}$$

as a test function in (3.2) and conclude, by Picone’s identity (2.14), that

$$(3.4) \quad J_H(u;\Omega) \leq \int_{\Omega} \left[H(\nabla u)^p - H(\nabla v)^{p-1} \langle \nabla_\xi H(\nabla v), \nabla \left(\frac{|u|^p}{v^{p-1}} \right) \rangle \right] \, dx$$

$$= \int_{\Omega} \Phi(u,v) \, dx.$$

Clearly, for positive supersolutions v of (3.1) and any $u \in W^{1,p}_{c}(\Omega) \cap C(\Omega)$, the reversed inequality

$$(3.5) \quad J_H(u;\Omega) \geq \int_{\Omega} \Phi(u,v) \, dx$$

holds true. For solutions (3.4) becomes an equality.

The following estimate is the main result of this paper.

Theorem 3.1 (Caccioppoli inequality). Let $v > 0$ be a weak subsolution of (3.1) in Ω. Then, for any fixed $q > p - 1$ and $w = v^{q/p}$, the inequality

$$(3.6) \quad \int_{\Omega} H(\eta \nabla w)^p \, dx \leq \left(\frac{q}{q-p+1} \right)^p \int_{\Omega} H(w \nabla \eta)^p \, dx + \frac{q^p p-1}{q-p+1} \int_{\Omega} g(x) w^p \eta^p \, dx$$

holds for all $0 \leq \eta \in C^{\infty}_{c}(\Omega)$.

Proof. Let v be a positive subsolution of (3.1) in Ω. Fix a nonnegative function $\eta \in C_c^\infty(\Omega)$. Then $u := v^{q/p}\eta$ belongs to $W^{1,p}_c \cap C(\Omega)$ and we can use it as a test function in (3.4) to get

$$J_H(v^{q/p}\eta; \Omega) \leq \int_{\Omega} H(\nabla(v^{q/p}\eta))^p dx + (p-1) \int_{\Omega} v^{q-p} H(\eta \nabla v)^p dx$$

$$-p \int_{\Omega} (v^{q(p-1)}/p\eta)^{p-1} \langle H(\nabla v)^{p-1} \nabla \xi H(\nabla v), \nabla (v^{q/p}\eta) \rangle dx$$

$$= \int_{\Omega} H(\nabla(v^{q/p}\eta))^p dx - (q-p+1) \int_{\Omega} v^{q-p} H(\eta \nabla v)^p dx$$

$$-p \int_{\Omega} (H(v^{q(p-1)/p}\eta \nabla v)^{p-1} \nabla \xi H(v^{q(p-1)/p}\eta \nabla v), v^{q/p} \nabla \eta) dx,$$

where we have used $\nabla (v^{q/p}\eta) = (q/p)v^{q(p-1)/p+1} \nabla v + v^{q/p} \nabla \eta$ and the property (2.5) of the norm H. To estimate the latter integral, we use the generalized Hölder inequality (2.9), (2.5) and Young’s inequality in the form

$$ab^{p-1} \leq \frac{1}{pr^{p-1}} a^p + \frac{p-1}{p} r b^p, \quad a, b \geq 0, \quad \tau > 0,$$

applied to $a = H(v^{q/p} \nabla \eta)$ and $b = H(v^{q(p-1)/p+1} \nabla v)$. As a result we obtain

$$J_H(v^{q/p}\eta; \Omega) \leq \int_{\Omega} H(\nabla(v^{q/p}\eta))^p dx - [q-p+1-\tau(p-1)] \int_{\Omega} H(\nabla(v^{q(p-1)/p+1}\eta \nabla v))^p dx$$

$$+ \frac{1}{\tau p-1} \int_{\Omega} H(v^{q/p} \nabla \eta)^p dx.$$

Now, making use of the definition of J_H, we get

$$\int_{\Omega} v^{q-p} H(\eta \nabla v)^p dx \leq \frac{\tau^{1-p}}{q-p+1-\tau(p-1)} \int_{\Omega} H(v^{q(p-1)/p} \nabla \eta)^p dx$$

$$+ \frac{1}{q-p+1-\tau(p-1)} \int_{\Omega} g(x) v^{q(p-1)/p} \eta^p dx,$$

which after choosing the constant τ appropriately leads to

$$\int_{\Omega} v^{q-p} H(\eta \nabla v)^p dx \leq \left(\frac{p}{q-p+1} \right)^p \int_{\Omega} H(v^{q(p-1)/p} \nabla \eta)^p dx + \frac{p}{q-p+1} \int_{\Omega} g(x) v^{q(p-1)/p} \eta^p dx.$$

Finally, the substitution $w = v^{q/p}$ yields (3.6) as claimed. \hfill \Box

Corollary 3.1. Let $q = p$ and $g(x) \equiv 0$ in Ω. If $v > 0$ is a weak subsolution of (3.1) in Ω, then

$$\int_{\Omega} H(\eta \nabla v)^p dx \leq p \int_{\Omega} H(v \nabla \eta)^p dx$$

for any nonnegative $\eta \in C_c^\infty(\Omega)$.

For the next corollary, let $B(x_0; r)$ be the Wulff ball with the radius $r > 0$ centered at x_0, i.e., the set $\{ x \in \mathbb{R}^n : H_0(x - x_0) \leq r \}$, and denote by B_r and B_{2r} two concentric H_0-balls with $x_0 \in \Omega$.

Corollary 3.2. If the conditions of Corollary 3.1 are satisfied and $B_{2r} \subset \Omega$, then

$$\int_{B_r} H(\nabla v)^p dx \leq (p/r)^p \int_{B_{2r}\setminus B_r} v^p dx.$$
Proof. To get the estimate (3.10), choose in (3.9) an H_0-radial test function η which satisfies $\eta \equiv 1$ in B_r, $H_0(\nabla \eta) \leq 1/r$ in $B_{2r} \setminus B_r$ and $\eta \equiv 0$ in $\Omega \setminus B_{2r}$. □

An analogous result as Theorem 3.1 above holds for positive supersolutions of (3.1) and a range of q smaller than $p - 1$. The proof is left to the reader. (If necessary, use $v(x) + \epsilon, \epsilon > 0$ instead of $v(x)$.)

Theorem 3.2. Let $v > 0$ be a supersolution of (3.1) in Ω. Then, for any fixed $q < p - 1$, the inequality

\[
\int_{\Omega} v^{q-p} H(\eta \nabla v)^p dx \leq \left(\frac{p}{p-q-1} \right)^p \int_{\Omega} H(\eta^{q/p} \nabla \eta)^p dx - \frac{p}{p-1} \int_{\Omega} g(x)v \eta^{p} dx
\]

holds for all $\eta \in C^\infty_c(\Omega)$ with $\eta \geq 0$.

The particular case $q = 0$ of the above theorem is interesting in the sense that the right-hand side of (3.11) does not contain v. The result specializes as follows.

Corollary 3.3 (Logarithmic Caccioppoli inequality). Let $v > 0$ be a weak supersolution of (3.1) in Ω. Then

\[
\int_{\Omega} H(\eta \nabla \log v)^p dx \leq \left(\frac{p}{p-1} \right)^p \int_{\Omega} H(\nabla \eta)^p dx - \frac{p}{p-1} \int_{\Omega} g(x)|\eta|^p dx,
\]

whenever $0 \leq \eta \in C^\infty_c(\Omega)$.

If $H(\xi) = ||\xi||_2, \xi \in \mathbb{R}^n$, and $g(x) \equiv 0$ in Ω, then (3.12) reduces to the well-known logarithmic Caccioppoli inequality for positive p-superharmonic functions (cf. [12]).

Acknowledgement

The author would like to express his thanks to the referee for helpful remarks and bringing references [1] and [7] to his attention.

References

