An application of dual convex bodies to the inverse Gauss curvature flow
HTML articles powered by AMS MathViewer
- by Mohammad N. Ivaki
- Proc. Amer. Math. Soc. 143 (2015), 1257-1271
- DOI: https://doi.org/10.1090/S0002-9939-2014-12314-8
- Published electronically: October 30, 2014
- PDF | Request permission
Abstract:
By means of dual convex bodies, we obtain regularity of solutions of the expanding Gauss curvature flows with the homogeneity degrees $-p$, $0<p<1$. At the end, we remark that our method can also be used to obtain regularity of solutions to the shrinking Gauss curvature flows with the homogeneity degrees less than one.References
- Ben Andrews, Evolving convex curves, Calc. Var. Partial Differential Equations 7 (1998), no. 4, 315–371. MR 1660843, DOI 10.1007/s005260050111
- Ben Andrews, Gauss curvature flow: the fate of the rolling stones, Invent. Math. 138 (1999), no. 1, 151–161. MR 1714339, DOI 10.1007/s002220050344
- Ben Andrews, Motion of hypersurfaces by Gauss curvature, Pacific J. Math. 195 (2000), no. 1, 1–34. MR 1781612, DOI 10.2140/pjm.2000.195.1
- Ben Andrews, Noncollapsing in mean-convex mean curvature flow, Geom. Topol. 16 (2012), no. 3, 1413–1418. MR 2967056, DOI 10.2140/gt.2012.16.1413
- Ben Andrews and Paul Bryan, A comparison theorem for the isoperimetric profile under curve-shortening flow, Comm. Anal. Geom. 19 (2011), no. 3, 503–539. MR 2843240, DOI 10.4310/CAG.2011.v19.n3.a3
- Ben Andrews and Xuzhong Chen, Surfaces moving by powers of Gauss curvature, Pure Appl. Math. Q. 8 (2012), no. 4, 825–834. MR 2959911, DOI 10.4310/PAMQ.2012.v8.n4.a1
- Ben Andrews, James McCoy, and Yu Zheng, Contracting convex hypersurfaces by curvature, Calc. Var. Partial Differential Equations 47 (2013), no. 3-4, 611–665. MR 3070558, DOI 10.1007/s00526-012-0530-3
- Sigurd Angenent, Guillermo Sapiro, and Allen Tannenbaum, On the affine heat equation for non-convex curves, J. Amer. Math. Soc. 11 (1998), no. 3, 601–634. MR 1491538, DOI 10.1090/S0894-0347-98-00262-8
- Bennett Chow, Deforming convex hypersurfaces by the $n$th root of the Gaussian curvature, J. Differential Geom. 22 (1985), no. 1, 117–138. MR 826427
- Bennett Chow and Robert Gulliver, Aleksandrov reflection and nonlinear evolution equations. I. The $n$-sphere and $n$-ball, Calc. Var. Partial Differential Equations 4 (1996), no. 3, 249–264. MR 1386736, DOI 10.1007/BF01254346
- Bennett Chow and Dong-Ho Tsai, Expansion of convex hypersurfaces by nonhomogeneous functions of curvature, Asian J. Math. 1 (1997), no. 4, 769–784. MR 1621575, DOI 10.4310/AJM.1997.v1.n4.a7
- Bennett Chow and Dong-Ho Tsai, Nonhomogeneous Gauss curvature flows, Indiana Univ. Math. J. 47 (1998), no. 3, 965–994. MR 1665729, DOI 10.1512/iumj.1998.47.1546
- C. Gerhardt, Non-scale-invariant inverse curvature flows in Euclidean space, Calc. Var. Partial Differential Equations DOI:10.1007/s00526-012-0589-x, 2012.
- Claus Gerhardt, Flow of nonconvex hypersurfaces into spheres, J. Differential Geom. 32 (1990), no. 1, 299–314. MR 1064876
- P. Guan, L. Ni, Entropy and a convergence theorem for Gauss curvature flow in high dimension, arXiv:1306.0625v1.
- Daniel Hug, Curvature relations and affine surface area for a general convex body and its polar, Results Math. 29 (1996), no. 3-4, 233–248. MR 1387565, DOI 10.1007/BF03322221
- G. Huisken, On the expansion of convex hypersurfaces by the inverse of symmetric curvature functions, (unpublished).
- Gerhard Huisken and Tom Ilmanen, The inverse mean curvature flow and the Riemannian Penrose inequality, J. Differential Geom. 59 (2001), no. 3, 353–437. MR 1916951
- Mohammad N. Ivaki, Centro-affine curvature flows on centrally symmetric convex curves, Trans. Amer. Math. Soc. 366 (2014), no. 11, 5671–5692. MR 3256179, DOI 10.1090/S0002-9947-2014-05928-X
- M. N. Ivaki, On the stability of the p-affine isoperimetric inequality, J. Geom. Anal. DOI: 10.1007/s12220-013-9401-1, 2013.
- M. N. Ivaki and A. Stancu, Volume preserving centro-affine normal flows, Comm. Anal. Geom., 21 (2013), no. 3, 671–685.
- F. J. Kaltenbach, Asymptotische Verhalten zufälliger konvexer Ployeder, Dissertation, Feiburg, 1990.
- N. V. Krylov, Nonlinear elliptic and parabolic equations of the second order, Mathematics and its Applications (Soviet Series), vol. 7, D. Reidel Publishing Co., Dordrecht, 1987. Translated from the Russian by P. L. Buzytsky [P. L. Buzytskiĭ]. MR 901759, DOI 10.1007/978-94-010-9557-0
- Qi-Rui Li, Surfaces expanding by the power of the Gauss curvature flow, Proc. Amer. Math. Soc. 138 (2010), no. 11, 4089–4102. MR 2679630, DOI 10.1090/S0002-9939-2010-10431-8
- Yi Li, Harnack inequality for the negative power Gaussian curvature flow, Proc. Amer. Math. Soc. 139 (2011), no. 10, 3707–3717. MR 2813400, DOI 10.1090/S0002-9939-2011-11039-6
- Monika Ludwig and Matthias Reitzner, A classification of $\textrm {SL}(n)$ invariant valuations, Ann. of Math. (2) 172 (2010), no. 2, 1219–1267. MR 2680490, DOI 10.4007/annals.2010.172.1223
- Guillermo Sapiro and Allen Tannenbaum, On affine plane curve evolution, J. Funct. Anal. 119 (1994), no. 1, 79–120. MR 1255274, DOI 10.1006/jfan.1994.1004
- Rolf Schneider, Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1993. MR 1216521, DOI 10.1017/CBO9780511526282
- Oliver C. Schnürer, Surfaces expanding by the inverse Gaußcurvature flow, J. Reine Angew. Math. 600 (2006), 117–134. MR 2283800, DOI 10.1515/CRELLE.2006.088
- Alina Stancu, Centro-affine invariants for smooth convex bodies, Int. Math. Res. Not. IMRN 10 (2012), 2289–2320. MR 2923167, DOI 10.1093/imrn/rnr110
- Kaising Tso, Deforming a hypersurface by its Gauss-Kronecker curvature, Comm. Pure Appl. Math. 38 (1985), no. 6, 867–882. MR 812353, DOI 10.1002/cpa.3160380615
- John I. E. Urbas, On the expansion of starshaped hypersurfaces by symmetric functions of their principal curvatures, Math. Z. 205 (1990), no. 3, 355–372. MR 1082861, DOI 10.1007/BF02571249
- John I. E. Urbas, Correction to: “An expansion of convex hypersurfaces” [J. Differential Geom. 33 (1991), no. 1, 91–125; MR1085136 (91j:58155)], J. Differential Geom. 35 (1992), no. 3, 763–765. MR 1163459
- Xi-Ping Zhu, Lectures on mean curvature flows, AMS/IP Studies in Advanced Mathematics, vol. 32, American Mathematical Society, Providence, RI; International Press, Somerville, MA, 2002. MR 1931534, DOI 10.1090/amsip/032
Bibliographic Information
- Mohammad N. Ivaki
- Affiliation: Institut für Diskrete Mathematik und Geometrie, Technische Universität Wien, Wiedner Hauptstr. 8-10, 1040 Wien, Austria
- Email: mohammad.ivaki@tuwien.ac.at
- Received by editor(s): April 23, 2013
- Received by editor(s) in revised form: July 8, 2013
- Published electronically: October 30, 2014
- Communicated by: Lei Ni
- © Copyright 2014
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 143 (2015), 1257-1271
- MSC (2010): Primary 53C44, 52A05; Secondary 35K55
- DOI: https://doi.org/10.1090/S0002-9939-2014-12314-8
- MathSciNet review: 3293740