On the convergence of the Calabi flow
HTML articles powered by AMS MathViewer
- by Weiyong He
- Proc. Amer. Math. Soc. 143 (2015), 1273-1281
- DOI: https://doi.org/10.1090/S0002-9939-2014-12318-5
- Published electronically: November 4, 2014
- PDF | Request permission
Abstract:
Let $(M, [\omega _0], J)$ be a compact Kähler manifold without holomorphic vector field. Suppose $\omega _0$ is (the unique) constant scalar curvature metric. We show that the Calabi flow with any smooth initial metric converges to the constant scalar curvature metric $\omega _0$ with the assumption that Ricci curvature stays uniformly bounded.References
- Eugenio Calabi, Extremal Kähler metrics, Seminar on Differential Geometry, Ann. of Math. Stud., vol. 102, Princeton Univ. Press, Princeton, N.J., 1982, pp. 259–290. MR 645743
- E. Calabi and X. X. Chen, The space of Kähler metrics. II, J. Differential Geom. 61 (2002), no. 2, 173–193. MR 1969662
- Xiuxiong Chen, The space of Kähler metrics, J. Differential Geom. 56 (2000), no. 2, 189–234. MR 1863016
- Xiuxiong Chen, Space of Kähler metrics. III. On the lower bound of the Calabi energy and geodesic distance, Invent. Math. 175 (2009), no. 3, 453–503. MR 2471594, DOI 10.1007/s00222-008-0153-7
- X. X. Chen and W. Y. He, On the Calabi flow, Amer. J. Math. 130 (2008), no. 2, 539–570. MR 2405167, DOI 10.1353/ajm.2008.0018
- Xiuxiong Chen and Gang Tian, Partial regularity for homogeneous complex Monge-Ampere equations, C. R. Math. Acad. Sci. Paris 340 (2005), no. 5, 337–340 (English, with English and French summaries). MR 2127106, DOI 10.1016/j.crma.2004.11.024
- X. X. Chen and G. Tian, Geometry of Kähler metrics and foliations by holomorphic discs, Publ. Math. Inst. Hautes Études Sci. 107 (2008), 1–107. MR 2434691, DOI 10.1007/s10240-008-0013-4
- S. K. Donaldson, Symmetric spaces, Kähler geometry and Hamiltonian dynamics, Northern California Symplectic Geometry Seminar, Amer. Math. Soc. Transl. Ser. 2, vol. 196, Amer. Math. Soc., Providence, RI, 1999, pp. 13–33. MR 1736211, DOI 10.1090/trans2/196/02
- S. K. Donaldson, Scalar curvature and projective embeddings. I, J. Differential Geom. 59 (2001), no. 3, 479–522. MR 1916953
- Simon K. Donaldson, Conjectures in Kähler geometry, Strings and geometry, Clay Math. Proc., vol. 3, Amer. Math. Soc., Providence, RI, 2004, pp. 71–78. MR 2103718
- Weiyong He, Local solution and extension to the Calabi flow, J. Geom. Anal. 23 (2013), no. 1, 270–282. MR 3010280, DOI 10.1007/s12220-011-9247-3
- Toshiki Mabuchi, Some symplectic geometry on compact Kähler manifolds. I, Osaka J. Math. 24 (1987), no. 2, 227–252. MR 909015
- Toshiki Mabuchi, Uniqueness of extremal Kähler metrics for an integral Kähler class, Internat. J. Math. 15 (2004), no. 6, 531–546. MR 2078878, DOI 10.1142/S0129167X04002429
- Uwe F. Mayer, Gradient flows on nonpositively curved metric spaces and harmonic maps, Comm. Anal. Geom. 6 (1998), no. 2, 199–253. MR 1651416, DOI 10.4310/CAG.1998.v6.n2.a1
- Stephen Semmes, Complex Monge-Ampère and symplectic manifolds, Amer. J. Math. 114 (1992), no. 3, 495–550. MR 1165352, DOI 10.2307/2374768
- J. Streets, Long time existence of Minimizing Movement solutions of Calabi flow, arxiv.org/abs/1208.2718.
- J. Streets, The consistence and convergence of K-energy minimizing movement, http://arxiv.org/abs/1301.3948.
- Gang Tian and Xiaohua Zhu, Convergence of the Kähler-Ricci flow on Fano manifolds, J. Reine Angew. Math. 678 (2013), 223–245. MR 3056108, DOI 10.1515/crelle.2012.021
- G. Tian, S.J Zhang, Z.L Zhang, X.H. Zhu, Supremum of Perelman’s entropy and Kähler-Ricci flow on a Fano manifold, arxiv.org/abs/1107.4018.
Bibliographic Information
- Weiyong He
- Affiliation: Department of Mathematics, University of Oregon, Eugene, Oregon 97403
- MR Author ID: 812224
- Email: whe@uoregon.edu
- Received by editor(s): June 17, 2013
- Received by editor(s) in revised form: July 19, 2013
- Published electronically: November 4, 2014
- Communicated by: Lei Ni
- © Copyright 2014
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 143 (2015), 1273-1281
- MSC (2010): Primary 53C55; Secondary 35K55
- DOI: https://doi.org/10.1090/S0002-9939-2014-12318-5
- MathSciNet review: 3293741