A characteristic property of the space $s$
HTML articles powered by AMS MathViewer
- by Dietmar Vogt
- Proc. Amer. Math. Soc. 143 (2015), 1183-1187
- DOI: https://doi.org/10.1090/S0002-9939-2014-12320-3
- Published electronically: November 4, 2014
- PDF | Request permission
Abstract:
It is shown that under certain stability conditions a complemented subspace of the space $s$ of rapidly decreasing sequences is isomorphic to $s$ and this condition characterizes $s$. This result is used to show that, for the classical Cantor set $X$, the space $C_\infty (X)$ of restrictions to $X$ of $C^\infty$-functions on $\mathbb {R}$ is isomorphic to $s$, which leads to an improvement of the theory developed in a previous work of the author.References
- Bora Arslan, Alexander P. Goncharov, and Mefharet Kocatepe, Spaces of Whitney functions on Cantor-type sets, Canad. J. Math. 54 (2002), no. 2, 225–238. MR 1892995, DOI 10.4153/CJM-2002-007-3
- A. Aytuna, J. Krone, and T. Terzioğlu, Complemented infinite type power series subspaces of nuclear Fréchet spaces, Math. Ann. 283 (1989), no. 2, 193–202. MR 980593, DOI 10.1007/BF01446430
- Leokadia Białas and Alexander Volberg, Markov’s property of the Cantor ternary set, Studia Math. 104 (1993), no. 3, 259–268. MR 1220665, DOI 10.4064/sm-104-3-259-268
- A. Goncharov, Bases in the spaces of $C^\infty$-functions on Cantor-type sets, Constr. Approx. 23 (2006), no. 3, 351–360. MR 2201471, DOI 10.1007/s00365-005-0598-5
- Reinhold Meise and Dietmar Vogt, Introduction to functional analysis, Oxford Graduate Texts in Mathematics, vol. 2, The Clarendon Press, Oxford University Press, New York, 1997. Translated from the German by M. S. Ramanujan and revised by the authors. MR 1483073
- T. Terzioğlu, On the diametral dimension of some classes of $F$-spaces, J. Karadeniz Univ. Fac. Arts Sci. Ser. Math.-Phys. 8 (1985), 1–13 (English, with Turkish summary). MR 924467
- Michael Tidten, Kriterien für die Existenz von Ausdehnungsoperatoren zu ${\mathfrak {E}}(K)$ für kompakte Teilmengen $K$ von $\textbf {R}$, Arch. Math. (Basel) 40 (1983), no. 1, 73–81 (German). MR 720896, DOI 10.1007/BF01192754
- D. Vogt, Structure theory of power series spaces of infinite type, RACSAM. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 97 (2003), no. 2, 339–363 (English, with English and Spanish summaries). MR 2068185
- Dietmar Vogt, Restriction spaces of $A^\infty$, Rev. Mat. Iberoam. 30 (2014), no. 1, 65–78. MR 3186931, DOI 10.4171/RMI/769
- Dietmar Vogt and Max Josef Wagner, Charakterisierung der Quotientenräume von $s$ und eine Vermutung von Martineau, Studia Math. 67 (1980), no. 3, 225–240 (German, with English summary). MR 592388, DOI 10.4064/sm-67-3-225-240
- Ahmed Zériahi, Inegalités de Markov et développement en série de polynômes orthogonaux des fonctions $C^\infty$ et $A^\infty$, Several complex variables (Stockholm, 1987/1988) Math. Notes, vol. 38, Princeton Univ. Press, Princeton, NJ, 1993, pp. 683–701 (French). MR 1207888
Bibliographic Information
- Dietmar Vogt
- Affiliation: FB Math.-Nat., Bergische Universität Wuppertal, Gauß-Str. 20, 42119 Wuppertal, Germany
- MR Author ID: 179065
- Email: dvogt@math.uni-wuppertal.de
- Received by editor(s): May 16, 2013
- Received by editor(s) in revised form: July 10, 2013
- Published electronically: November 4, 2014
- Communicated by: Thomas Schlumprecht
- © Copyright 2014
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 143 (2015), 1183-1187
- MSC (2010): Primary 46A45, 46A63, 46E10
- DOI: https://doi.org/10.1090/S0002-9939-2014-12320-3
- MathSciNet review: 3293733