The weighted Sobolev and mean value inequalities
HTML articles powered by AMS MathViewer
- by Adriano Alves de Medeiros
- Proc. Amer. Math. Soc. 143 (2015), 1229-1239
- DOI: https://doi.org/10.1090/S0002-9939-2014-12337-9
- Published electronically: November 24, 2014
- PDF | Request permission
Abstract:
In this paper we prove a Michael-Simon inequality in the weighted setting and using this inequality we obtain a diameter control depending of the $f$-mean curvature, which is based in the work of Topping.References
- William K. Allard, On the first variation of a varifold, Ann. of Math. (2) 95 (1972), 417–491. MR 307015, DOI 10.2307/1970868
- E. Bombieri, E. De Giorgi, and M. Miranda, Una maggiorazione a priori relativa alle ipersuperfici minimali non parametriche, Arch. Rational Mech. Anal. 32 (1969), 255–267 (Italian). MR 248647, DOI 10.1007/BF00281503
- Tobias Holck Colding and William P. Minicozzi II, A course in minimal surfaces, Graduate Studies in Mathematics, vol. 121, American Mathematical Society, Providence, RI, 2011. MR 2780140, DOI 10.1090/gsm/121
- Tobias H. Colding and William P. Minicozzi II, Generic mean curvature flow I: generic singularities, Ann. of Math. (2) 175 (2012), no. 2, 755–833. MR 2993752, DOI 10.4007/annals.2012.175.2.7
- David Hoffman and Joel Spruck, Sobolev and isoperimetric inequalities for Riemannian submanifolds, Comm. Pure Appl. Math. 27 (1974), 715–727. MR 365424, DOI 10.1002/cpa.3160270601
- D. Impera and M. Rimoldi, Stability properties and topology at infinity of f-minimal hypersurfaces. arXiv:1302.6160 [math.DG].
- Jia-Yong Wu and Yu Zheng, Relating diameter and mean curvature for Riemannian submanifolds, Proc. Amer. Math. Soc. 139 (2011), no. 11, 4097–4104. MR 2823054, DOI 10.1090/S0002-9939-2011-10848-7
- V. Maz’ya, (Editor) Sobolev spaces in Mathematics I, II, II.
- J. H. Michael and L. M. Simon, Sobolev and mean-value inequalities on generalized submanifolds of $R^{n}$, Comm. Pure Appl. Math. 26 (1973), 361–379. MR 344978, DOI 10.1002/cpa.3160260305
- Mario Miranda, Diseguaglianze di Sobolev sulle ipersuperfici minimali, Rend. Sem. Mat. Univ. Padova 38 (1967), 69–79 (Italian). MR 221350
- M. Batista and H. Mirandola, A Sobolev-type inequality for submanifolds in weighted Riemannian Manifolds, arXiv:1304.2271 [math.DG].
- Nam Q. Le, Blow up of subcritical quantities at the first singular time of the mean curvature flow, Geom. Dedicata 151 (2011), 361–371. MR 2780756, DOI 10.1007/s10711-010-9538-z
- S. L. Soboleve, On a theorem of functional analysis (Russian). Mat. Sb. 4, no.3 (1938), 471–496. English trans.: Eleven papers in Analysis. Am. Math. Transl. (2) 34, (1963), 39–68.
- Gu-Ji Tian and Xu-Jia Wang, A class of Sobolev type inequalities, Methods Appl. Anal. 15 (2008), no. 2, 263–276. MR 2481683, DOI 10.4310/MAA.2008.v15.n2.a10
- Peter Topping, Diameter control under Ricci flow, Comm. Anal. Geom. 13 (2005), no. 5, 1039–1055. MR 2216151
- Peter Topping, Relating diameter and mean curvature for submanifolds of Euclidean space, Comment. Math. Helv. 83 (2008), no. 3, 539–546. MR 2410779, DOI 10.4171/CMH/135
- Qiaoling Wang, Complete submanifolds in manifolds of partially non-negative curvature, Ann. Global Anal. Geom. 37 (2010), no. 2, 113–124. MR 2578260, DOI 10.1007/s10455-009-9176-6
- William P. Ziemer, Weakly differentiable functions, Graduate Texts in Mathematics, vol. 120, Springer-Verlag, New York, 1989. Sobolev spaces and functions of bounded variation. MR 1014685, DOI 10.1007/978-1-4612-1015-3
Bibliographic Information
- Adriano Alves de Medeiros
- Affiliation: Departamento de Matemática, Universidade Federal da Paraíba, 58051-900, João Pessoa, PB, Brazil
- Email: adrianoalves@mat.ufpb.br
- Received by editor(s): April 17, 2013
- Received by editor(s) in revised form: May 24, 2013
- Published electronically: November 24, 2014
- Additional Notes: The author would like to thank Gregorio Pacelli Bessa and Jorge Herbert Soares de Lira for stimulating conversations about this subject.
- Communicated by: Lei Ni
- © Copyright 2014
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 143 (2015), 1229-1239
- MSC (2010): Primary 53C42; Secondary 53C21
- DOI: https://doi.org/10.1090/S0002-9939-2014-12337-9
- MathSciNet review: 3293738
Dedicated: Dedicated to my son João Gabriel