$G$-complete reducibility in non-connected groups
HTML articles powered by AMS MathViewer
- by Michael Bate, Sebastian Herpel, Benjamin Martin and Gerhard Röhrle
- Proc. Amer. Math. Soc. 143 (2015), 1085-1100
- DOI: https://doi.org/10.1090/S0002-9939-2014-12348-3
- Published electronically: November 12, 2014
- PDF | Request permission
Abstract:
In this paper we present an algorithm for determining whether a subgroup $H$ of a non-connected reductive group $G$ is $G$-completely reducible. The algorithm consists of a series of reductions; at each step, we perform operations involving connected groups, such as checking whether a certain subgroup of $G^0$ is $G^0$-cr. This essentially reduces the problem of determining $G$-complete reducibility to the connected case.References
- Michael Bate, Sebastian Herpel, Benjamin Martin, and Gerhard Röhrle, $G$-complete reducibility and semisimple modules, Bull. Lond. Math. Soc. 43 (2011), no. 6, 1069–1078. MR 2861529, DOI 10.1112/blms/bdr042
- Michael Bate, Benjamin Martin, and Gerhard Röhrle, A geometric approach to complete reducibility, Invent. Math. 161 (2005), no. 1, 177–218. MR 2178661, DOI 10.1007/s00222-004-0425-9
- Michael Bate, Benjamin Martin, and Gerhard Röhrle, Complete reducibility and commuting subgroups, J. Reine Angew. Math. 621 (2008), 213–235. MR 2431255, DOI 10.1515/CRELLE.2008.063
- Michael Bate, Benjamin Martin, Gerhard Röhrle, and Rudolf Tange, Complete reducibility and separability, Trans. Amer. Math. Soc. 362 (2010), no. 8, 4283–4311. MR 2608407, DOI 10.1090/S0002-9947-10-04901-9
- Michael Bate, Benjamin Martin, Gerhard Röhrle, and Rudolf Tange, Closed orbits and uniform $S$-instability in geometric invariant theory, Trans. Amer. Math. Soc. 365 (2013), no. 7, 3643–3673. MR 3042598, DOI 10.1090/S0002-9947-2012-05739-4
- V. Chernousov, M.-A. Knus, and J.-P. Tignol, Conjugacy classes of trialitarian automorphisms and symmetric compositions, J. Ramanujan Math. Soc. 27 (2012), no. 4, 479–508. MR 3027447
- Alberto Elduque, Okubo algebras in characteristic $3$ and their automorphisms, Comm. Algebra 27 (1999), no. 6, 3009–3030. MR 1687316, DOI 10.1080/00927879908826607
- R. Guralnick and G. Malle, Products of commutators and classes in algebraic groups, arXiv:1302.0182.
- James E. Humphreys, Linear algebraic groups, Graduate Texts in Mathematics, No. 21, Springer-Verlag, New York-Heidelberg, 1975. MR 0396773
- Martin W. Liebeck and Gary M. Seitz, Reductive subgroups of exceptional algebraic groups, Mem. Amer. Math. Soc. 121 (1996), no. 580, vi+111. MR 1329942, DOI 10.1090/memo/0580
- Martin W. Liebeck and Gary M. Seitz, Variations on a theme of Steinberg, J. Algebra 260 (2003), no. 1, 261–297. Special issue celebrating the 80th birthday of Robert Steinberg. MR 1973585, DOI 10.1016/S0021-8693(02)00649-X
- Martin W. Liebeck and Gary M. Seitz, Unipotent and nilpotent classes in simple algebraic groups and Lie algebras, Mathematical Surveys and Monographs, vol. 180, American Mathematical Society, Providence, RI, 2012. MR 2883501, DOI 10.1090/surv/180
- Benjamin M. S. Martin, Reductive subgroups of reductive groups in nonzero characteristic, J. Algebra 262 (2003), no. 2, 265–286. MR 1971039, DOI 10.1016/S0021-8693(03)00189-3
- J.-P. Serre, The notion of complete reducibility in group theory, Moursund Lectures, Part II, University of Oregon, 1998, arXiv:math/0305257v1 [math.GR].
- Jean-Pierre Serre, Complète réductibilité, Astérisque 299 (2005), Exp. No. 932, viii, 195–217 (French, with French summary). Séminaire Bourbaki. Vol. 2003/2004. MR 2167207
- Nicolas Spaltenstein, Classes unipotentes et sous-groupes de Borel, Lecture Notes in Mathematics, vol. 946, Springer-Verlag, Berlin-New York, 1982 (French). MR 672610
- Robert Steinberg, Endomorphisms of linear algebraic groups, Memoirs of the American Mathematical Society, No. 80, American Mathematical Society, Providence, R.I., 1968. MR 0230728
Bibliographic Information
- Michael Bate
- Affiliation: Department of Mathematics, University of York, York YO10 5DD, United Kingdom
- Email: michael.bate@york.ac.uk
- Sebastian Herpel
- Affiliation: Fachbereich Mathematik, Technische Universität Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany
- Address at time of publication: Ruhr-Universität Bochum, Fakultät für Mathematik, D-44780 Bochum, Germany
- Email: herpel@mathematik.uni-kl.de, sebastian.herpel@rub.de
- Benjamin Martin
- Affiliation: Department of Mathematics, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- MR Author ID: 659870
- Email: Ben.Martin@auckland.ac.nz
- Gerhard Röhrle
- Affiliation: Fakultät für Mathematik, Ruhr-Universität Bochum, D-44780 Bochum, Germany
- MR Author ID: 329365
- Email: gerhard.roehrle@rub.de
- Received by editor(s): March 8, 2013
- Received by editor(s) in revised form: July 24, 2013
- Published electronically: November 12, 2014
- Communicated by: Pham Huu Tiep
- © Copyright 2014
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 143 (2015), 1085-1100
- MSC (2010): Primary 20G15
- DOI: https://doi.org/10.1090/S0002-9939-2014-12348-3
- MathSciNet review: 3293724