The lift invariant distinguishes components of Hurwitz spaces for $A_5$
HTML articles powered by AMS MathViewer
- by Adam James, Kay Magaard and Sergey Shpectorov
- Proc. Amer. Math. Soc. 143 (2015), 1377-1390
- DOI: https://doi.org/10.1090/S0002-9939-2014-12185-X
- Published electronically: December 3, 2014
- PDF | Request permission
Abstract:
Hurwitz spaces are moduli spaces of curve covers. The isomorphism classes of covers of ${P}^1\mathbb {C}$ with given ramification data are parameterized combinatorially by Nielsen tuples in the monodromy group $G$. The Artin braid group acts on Nielsen tuples, and the orbits of this action correspond to the connected components of the corresponding Hurwitz space. In this article we consider the case $G=A_5$. We give a complete classification of the braid orbits for all ramification types, showing that the components are always distinguishable by the Fried-Serre lift invariant.References
- Joan S. Birman, Braids, links, and mapping class groups, Annals of Mathematics Studies, No. 82, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1974. MR 0375281
- Fabrizio Catanese, Michael Loenne, and Fabio Perroni, The irreducible components of the moduli space of dihedral covers of algebraic curves, preprint, arXiv:1206.5498 (2012).
- Fabrizio Catanese, Michael Lönne, and Fabio Perroni, Irreducibility of the space of dihedral covers of the projective line of a given numerical type, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 22 (2011), no. 3, 291–309. MR 2847474, DOI 10.4171/RLM/601
- A. Clebsch, Theorie der binaren algebraischen formen, 1872.
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, $\Bbb {ATLAS}$ of finite groups, Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary characters for simple groups; With computational assistance from J. G. Thackray. MR 827219
- Roger Fenn, Dale Rolfsen, and Jun Zhu, Centralisers in the braid group and singular braid monoid, Enseign. Math. (2) 42 (1996), no. 1-2, 75–96. MR 1395042
- Michael D. Fried, Alternating groups and moduli space lifting invariants, Israel J. Math. 179 (2010), 57–125. MR 2735035, DOI 10.1007/s11856-010-0073-2
- Michael D. Fried and Helmut Völklein, The inverse Galois problem and rational points on moduli spaces, Math. Ann. 290 (1991), no. 4, 771–800. MR 1119950, DOI 10.1007/BF01459271
- The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.4.12, 2008.
- Juan González-Meneses and Bert Wiest, On the structure of the centralizer of a braid, Ann. Sci. École Norm. Sup. (4) 37 (2004), no. 5, 729–757 (English, with English and French summaries). MR 2103472, DOI 10.1016/j.ansens.2004.04.002
- A. James, K. Magaard, S. Shpectorov, and H. Völklein, MAPCLASS: A package for mapping class orbit computation, 2011.
- Gareth A. Jones and Alexander Zvonkin, Orbits of braid groups on cacti, Mosc. Math. J. 2 (2002), no. 1, 127–160, 200 (English, with English and Russian summaries). MR 1900588, DOI 10.17323/1609-4514-2002-2-1-127-160
- Fu Liu and Brian Osserman, The irreducibility of certain pure-cycle Hurwitz spaces, Amer. J. Math. 130 (2008), no. 6, 1687–1708. MR 2464030, DOI 10.1353/ajm.0.0031
- Kay Magaard, Sergey Shpectorov, and Helmut Völklein, A GAP package for braid orbit computation and applications, Experiment. Math. 12 (2003), no. 4, 385–393. MR 2043989
- Charmaine Sia, Hurwitz equivalence in tuples of dihedral groups, dicyclic groups, and semidihedral groups, Electron. J. Combin. 16 (2009), no. 1, Research Paper 95, 17. MR 2529804, DOI 10.37236/184
- H. Völklein, Moduli spaces for covers of the Riemann sphere, Israel J. Math. 85 (1994), no. 1-3, 407–430. MR 1264353, DOI 10.1007/BF02758650
- Helmut Völklein, Groups as Galois groups, Cambridge Studies in Advanced Mathematics, vol. 53, Cambridge University Press, Cambridge, 1996. An introduction. MR 1405612, DOI 10.1017/CBO9780511471117
Bibliographic Information
- Adam James
- Affiliation: School of Mathematics, University of Birmingham, Birmingham, B15 2TT, United Kingdom
- Email: adamjames87@gmail.com
- Kay Magaard
- Affiliation: School of Mathematics, University of Birmingham, Birmingham, B15 2TT, United Kingdom
- MR Author ID: 252279
- Email: k.magaard@bham.ac.uk
- Sergey Shpectorov
- Affiliation: School of Mathematics, University of Birmingham, Birmingham, B15 2TT, United Kingdom
- MR Author ID: 198861
- Email: S.Shpectorov@bham.ac.uk
- Received by editor(s): October 12, 2012
- Received by editor(s) in revised form: February 25, 2013
- Published electronically: December 3, 2014
- Communicated by: Pham Huu Tiep
- © Copyright 2014
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 143 (2015), 1377-1390
- MSC (2010): Primary 20B25, 20B40; Secondary 14H55, 20F36, 14H10
- DOI: https://doi.org/10.1090/S0002-9939-2014-12185-X
- MathSciNet review: 3314053