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THE CLUSTER VALUE PROBLEM

IN SPACES OF CONTINUOUS FUNCTIONS

W. B. JOHNSON AND S. ORTEGA CASTILLO

(Communicated by Thomas Schlumprecht)

Abstract. We study the cluster value problem for certain Banach algebras
of holomorphic functions defined on the unit ball of a complex Banach space
X. The main results are for spaces of the form X = C(K).

1. Preliminaries

A cluster value problem for a complex Banach space X is a weak version of the
corona problem for the open unit ball B ofX, which is a long-standing open problem
in complex analysis when X has dimension at least 2. Instead of studying when B
is dense in the spectrum of a uniform algebra H of bounded analytic functions on
B in the weak topology induced by H(corona problem), the cluster value problem
investigates the following situation:

Let B̄∗∗ be the closed unit ball of the bidual X∗∗, and let MH be the spectrum
(i.e., maximal ideal space) of a uniform algebra H of norm continuous functions
on B with H ⊃ X∗. Then π : MH → B̄∗∗, given by π(τ ) = τ |X∗ for τ ∈ MH , is
surjective (as a consequence of the results in Chapter 2 of [10]). For each x∗∗ ∈ B̄∗∗,
Mx∗∗(B) = π−1(x∗∗) is called the fiber of MH over x∗∗. Aron, Carando, Gamelin,
Lassalle and Maestre observed in [4] that for every x∗∗ ∈ B̄∗∗ we have the inclusion

(1) ClB(f, x
∗∗) ⊂ f̂(Mx∗∗(B)), ∀f ∈ H,

where ClB(f, x
∗∗), the cluster set of f at x∗∗, stands for the set of all limits of

values of f along nets in B converging weak-star to x∗∗, while f̂ represents the
Gelfand transform of f. There they formulated the cluster value problem for H :
for which Banach spaces X is there equality in (1) for all x∗∗ ∈ B̄∗∗? When there is
equality in (1) for a certain x∗∗ ∈ B̄∗∗, we say X satisfies the cluster value theorem
for H at x∗∗.

As was pointed out in [4], it is easy to check that the cluster value theorem for
H at all points in B̄∗∗ is indeed weaker than the corona problem for B and H :
Given x∗∗ ∈ B̄∗∗, if τ ∈ Mx∗∗(B) were the weak-star limit of the net (xα) ⊂ B,

then limα f(xα) = f̂(τ ) for all f ∈ H, and in particular limα x∗(xα) = x̂∗(τ ) =
x∗(x∗∗) for all x∗ ∈ X∗, i.e., x∗∗ would be the weak-star limit of (xα), and so

f̂(τ ) ∈ ClB(f, x
∗∗).
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In an effort to research the corona problem, we investigate conditions that guar-
antee the simpler cluster value theorem for a Banach algebra of analytic functions
defined on the unit ball of a complex Banach space X. In particular, we generalize
some of the results in [4]. Our main results are for the spaces of the formX = C(K),
including a translation result of a cluster value problem for certain algebras H at
any point in BC(K) to the origin.

2. Cluster value problem in finite-codimensional subspaces

In [4], the authors obtain a cluster value theorem at the origin for Banach spaces
with shrinking 1-unconditional bases for the algebra H = Au(B) of bounded an-
alytic functions on B that are also uniformly continuous. Slight modifications of
their arguments in Section 3 of [4] yield the following:

Proposition 2.1. Let S be a finite rank operator on X, so that P = I − S has

norm one. If φ ∈ M0(B), then f̂(φ) = f̂ ◦ P (φ), for all f ∈ Au(B).

Proposition 2.2. Suppose that for each finite-dimensional subspace E of X∗ and
ε > 0 there exists a finite rank operator S on X so that ||(I − S∗)|E || < ε and
||I − S|| = 1. Then the cluster value theorem holds for Au(B) at 0.

Proof. Suppose that 0 /∈ ClB(f, 0). We must show that 0 /∈ f̂(M0). Since 0 /∈
ClB(f, 0), there exist δ > 0 and a weak neighborhood U of 0 in X such that |f | ≥ δ
on U ∩B. Without loss of generality we may assume U =

⋂n
i=1{x ∈ X : |x∗

i | < ε0}
for some x∗

1, · · · , x∗
n ∈ BX∗ and ε0 > 0. Let E = span{x∗

1, · · · , x∗
n} and let S be as

in the statement for ε = ε0. Then |f ◦ (I − S)| ≥ δ on B, because for every x ∈ B
we have that (I − S)x ∈ U, indeed:

|〈x∗
i , (I − S)x〉| = |〈(I − S∗)x∗

i , x〉| < ε0, for i = 1, · · · , n.

Consequently f ◦ (I − S) is invertible in Au(B). Hence ̂f ◦ (I − S) �= 0 on the fiber

of the spectrum of Au(B) over 0. From the preceding lemma we then obtain f̂ �= 0

on M0, that is, 0 /∈ f̂(M0). �

Since Proposition 2.2 builds on Proposition 2.1, one naturally wonders if Propo-
sition 2.1 can be extended to the larger algebra H∞(B) of all bounded analytic
functions on B. The answer is no in general, as shown by the following example of
Aron.

Example 2.3. There exists a finite rank operator S on �2 so that P = I − S
has norm one, and there exists φ ∈ M0(B�2) as well as f ∈ H∞(B�2) so that

f̂(φ) �= f̂ ◦ P (φ).

Proof. Let S : �2 → �2 be given by S(x) = (x1, 0, 0, · · · ).
Clearly S is a finite rank operator and P = I − S has norm one.
Let (rj) and (sj) be sequences of positive real numbers, such that (rj) ↓ 0

and (sj) ↑ 1 in such a way that each r2j + s2j < 1 and r2j + s2j → 1−. For each
j = 1, 2, 3, · · · , let δrje1+sjej be the usual point evaluation homomorphism from
H∞(B�2) → C. Let φ : H∞(B�2) → C be an accumulation point of {δrje1+sjej} in
the spectrum of H∞(B�2). Let f : B�2 → C be the H∞ function given by

f(x) =
x1√

1−
∑∞

j=2 x
2
j

,
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where the square root is taken with respect to the usual logarithm branch. Then
φ(f) = 1. However φ(f ◦ P ) = 0 since f ◦ P ≡ 0. �

When a Banach space has a shrinking reverse monotone finite-dimensional de-
composition (FDD), that is, a shrinking FDD so that the natural projections are at
distance one from the identity operator, we have that the condition in Proposition
2.2 holds, and therefore we obtain a cluster value theorem:

Corollary 2.4. If X is a Banach space with a shrinking reverse monotone FDD,
then the cluster value theorem holds for Au(B) at 0.

The operators P considered in Propositions 2.1 and 2.2 have finite-codimensional
rank, which suggests that the cluster value problem at the origin of a Banach
space can be studied by considering the same problem in its finite-codimensional
subspaces. We established the following relationship with the help of Aron and
Maestre:

Proposition 2.5. If Y is a closed finite-codimensional subspace of X and f ∈
Au(B), then ClB(f, 0) = ClBY

(f |Y , 0), where BY is the unit ball of Y.

Proof. Au(B) coincides with the uniform limits on B̄ of continuous polynomials
on X (see Theorem 7.13 in [11] and p. 56 in [3]), where polynomials are finite lin-
ear combinations of symmetric multi-linear mappings (of possibly distinct degrees)
restricted to the diagonal. Thus, by passing to the uniform limit on B̄, we may
assume f is an m-homogeneous polynomial, with associated symmetric m-linear
functional F. Let (xα) be a weakly null net in B such that f(xα) → λ.

Each xα can be written uniquely as yα + uα, where yα ∈ Y and uα is from a
fixed finite-dimensional complement of Y in X. Then,

f(xα)

=F (xα, · · · , xα)

=f(yα) +mF (yα, · · · , yα, uα) + [m(m− 1)/2]F (xα, · · · , xα, uα, uα) + · · ·+ f(uα).

Now, since (xα) is weakly null, the same holds for (yα) and (uα). However,
since (uα) belongs to a finite-dimensional space, it follows that ||uα|| → 0. Thus
F (yα, · · · , yα, uα), F (yα, · · · , yα, uα, uα), · · · , f(uα) all go to 0. Thus f(yα) → λ.
Finally, since each ||yα|| ≤ ||xα||+||−uα|| < 1+||uα||, then by defining tα = 1

1+||uα||
we get that ||tαyα|| < 1 for all α and tα → 1, and consequently, lim f(tαyα) =
lim tmα f(yα) = λ. Hence λ ∈ ClBY

(f |Y , 0). �

As a consequence we obtain that the cluster sets of an element f of Au(B) at
0 can be described in terms of the Gelfand transforms of f |BY

as Y ranges over
finite-codimensional subspaces of X:

Proposition 2.6. For every Banach space X,

ClB(f, 0) =
⋂

Y⊂X,dim(X/Y )<∞
f̂ |BY

(M0(BY )), ∀f ∈ Au(B).

Proof. From Proposition 2.5 and the inclusion in (1), for every finite-codimensional
subspace Y of X,

ClB(f, 0) = ClBY
(f |BY

, 0) ⊂ f̂ |BY
(M0(BY )).
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For the reverse inclusion, suppose 0 /∈ ClB(f, 0). Then there are ε > 0 and a
weak neighborhood U of 0 such that |f | > ε on U ∩ B. U contains a closed finite-

codimensional subspace Y0 of X, so |f |BY0
| > ε. Hence f̂ |BY0

is invertible, which

implies that 0 /∈ f̂ |BY0
(M0(BY0

)). �

Going back to Proposition 2.2, we see that having the cluster value property at
0 only requires the existence of a certain type of finite rank operators at distance
one from the identity operator. However simple this condition may seem, it is
impossible in the case of the Banach space c of continuous functions on ω, also seen
as the subspace of l∞ of convergent sequences:

Example 2.7. Let L ∈ Bc∗ be given by

L((cn)n) = lim
n→∞

cn.

If S : c → c is a finite rank operator with ||(S∗− Ic∗)L|| < ε, then ||S− Ic|| ≥ 2− ε.

Proof. For each k ∈ N, consider Lk ∈ Bc∗ given by

Lk((cn)n) = ( lim
n→∞

cn − ck)/2.

Let us show that ||S∗(Lk)|| → 0 as k → ∞. For every x ∈ Bc, S
∗(Lk)x =

Lk(Sx) → 0 as k → ∞. Moreover, since S has finite rank, {Sx : x ∈ Bc} is pre-
compact. Thus S∗Lk = Lk ◦S converges to zero uniformly on Bc, i.e., ||S∗Lk|| → 0
as k → ∞.

Now note that ||L− 2Lk|| = 1 for each k, so

||S∗ − Ic∗ || ≥ ||(S∗− Ic∗)(L− 2Lk)|| ≥ ||2Lk − 2 ·S∗(Lk)|| − ε ≥ 2− ε− 2||S∗(Lk)||.

Since S∗(Lk) → 0, then ||S − Ic|| = ||S∗ − Ic∗ || ≥ 2− ε. �

The reader may check that the condition is also impossible for Lp, 1 ≤ p �= 2 <
∞.

However, note that since c0 is one-codimensional in c, Proposition 2.5 implies
that for all f ∈ Au(Bc),

ClBc
(f, 0) = ClBc0

(f |Bc0
, 0).

Also, Propositions 1.59 and 2.8 of [8] imply that all functions in Au(Bc0) can be
uniformly approximated on B by polynomials in the functions in X∗, which in turn
implies that each fiber at x ∈ B̄∗∗ consists only of x, so the cluster value theorem
for Au(Bc0) holds, and in particular

ClBc0
(f |Bc0

, 0) = f̂ |Bc0
(M0(Bc0)), ∀f ∈ Au(Bc).

Hence we are left to compare f̂ |Bc0
(M0(Bc0)) with f̂(M0(Bc)) for f ∈ Au(Bc).

Note that an inclusion is evident:

Proposition 2.8. For a Banach space X and for Y a subspace of X,

f̂ |BY
(M0(BY )) ⊂ f̂(M0(B)), ∀f ∈ Au(B).

Proof. Let f ∈ Au(B) and τ ∈ M0(BY ). Since φ1 : Au(B) → Au(BY ) given by
φ(g) = g|Y for all g ∈ Au(B) is a continuous homomorphism that maps A(B) into
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A(BY ), the mapping τ̃ : Au(B) → C given by τ̃(g) = τ (g|Y ) for all g ∈ Au(B) is in
the fiber M0(B). Moreover,

f̂ |Y (τ ) = f̂(τ̃).

�

The reverse inclusion is unclear. However, the space c also has the property of
being isomorphic to c0, which implies, as we will see, that c has the cluster value
property too.

Let P (X) denote the continuous polynomials on X, Pf (X) the polynomials in
the functions of X∗ (known as finite type polynomials), and A(BX) the uniform
algebra of uniform limits of elements in Pf (X).

Lemma 2.9. Let X be a Banach space so that Au(BX) = A(BX). If the Banach
space Y is isomorphic to X, then also Au(BY ) = A(BY ).

Proof. Let T : Y → X be the Banach space isomorphism between Y and X.
Let f ∈ Au(BY ). Then there exists a sequence of polynomials Pn ∈ P(Y ) such

that ||Pn − f ||BY
≤ 1

n , ∀n ∈ N.

For each n ∈ N, Pn ◦ T−1 ∈ P(X), so there exists a polynomial Qn ∈ Pf (X)
such that ||Pn ◦ T−1 −Qn||BX

< 1
n·||T || , and consequently ||Pn −Qn ◦ T ||BY

< 1
n ,

where Qn ◦ T ∈ Pf (Y ).
Consequently, the sequence of polynomials Qn ◦ T ∈ Pf (Y ) converges to f uni-

formly on BY , so f ∈ A(BY ). �

Corollary 2.10. The Banach space c satisfies the cluster value theorem for Au(Bc)

at all points in Bc
∗∗
.

3. Cluster value problem in C(K) � c

Bessaga and Pe�lczyński proved in [6] that, when α ≥ ωω is a countable ordinal,
C(α) is not isomorphic to c = C(ω). Therefore we no longer can use Lemma 2.9 to
obtain a cluster value theorem on such spaces of continuous functions.

Nevertheless, for α a countable ordinal, the intervals [1, α] are always compact,
Hausdorff and dispersed (they contain no perfect nonvoid subset). The compact,
Hausdorff and dispersed sets K satisfy, from the Main Theorem in [12], that X =
C(K) contains no isomorphic copy of l1. Moreover, from Theorem 5.4.5 in [1], X =
C(K) has the Dunford-Pettis property. Therefore, for dispersed K, the continuous
polynomials on X = C(K) are weakly (uniformly) continuous on bounded sets by
Corollary 2.37 in [8].

Moreover, since X∗ = l1(K) has the approximation property, Proposition 2.8
in [8] and the conclusion in the former paragraph now yield that all continuous
polynomials on X can be uniformly approximated, on bounded sets, by polynomials
of finite type. Thus the elements of Au(B) can be approximated, uniformly on B,
by polynomials of finite type. Hence Au(B) = A(B), so each fiber at x ∈ B̄∗∗ is
the singleton {x}, and then X satisfies the cluster value theorem for the algebra
Au(B).

We now consider the cluster value problem on X for the algebra of all bounded
analytic functions H∞(B). Following the line of proof of Theorem 5.1 in [4], we
still get a cluster value theorem.
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Theorem 3.1. If X is the Banach space C(K), for K compact, Hausdorff and
dispersed, then the cluster value theorem holds for H∞(B) at every x ∈ B̄∗∗.

Proof. Fix f ∈ H∞(B) and w = (wt)t∈K ∈ B̄∗∗ (where C(K)∗∗ = l∞(K)). Sup-

pose 0 /∈ ClB(f, w). It suffices to show that 0 /∈ f̂(Mw).
Since 0 is not a cluster value of f at w, there exists a weak-star neighborhood U

of w such that 0 /∈ f(U ∩B), where

U ∩B ⊃
n⋂

i=1

{z ∈ B : |〈(z − w), x∗
i 〉| < ε},

for some ε > 0 and x∗
1, · · · , x∗

n ∈ X∗ = l1(K).
We have that x∗

i = (x∗
i (t))t∈K has countably many nonzero coordinates

{x∗
i (t)}t∈Fi

for i = 1, · · · , n. Thus,

U ∩B ⊃
n⋂

i=1

{z ∈ B : |
∑
t∈K

(zt − wt)x
∗
i (t)| < ε},

and there is a finite set F ⊂
⋃n

i=1 Fi so that
∑

t/∈F |x∗
i (t)| < ε/4, for i = 1, · · · , n.

Then,

U ∩B ⊃
⋂
t∈F

{z ∈ B : |zt − wt| < δ},

where

δ = min
1≤i≤n,t∈F

ε

(2|F |)|x∗
i (t)|

.

In summary, there exist c > 0, δ > 0 and a finite set F ⊂ K such that if z ∈ B
satisfies |zt − wt| < δ for t ∈ F , then |f(z)| ≥ c. Relabel the indices in F as
t1, · · · , tm, where m = |F |. Then proceed as in the proof of Theorem 5.1 in [4]:

For 0 ≤ k ≤ m− 1, define Uk = {z ∈ B : |ztj −wtj | < δ, k+1 ≤ j ≤ m}, and set
Um = B. Note that 1/f is bounded and analytic on U0.

We claim that for each k, 1 ≤ k ≤ m, there are functions gk and hk,j , 1 ≤ j ≤ k,
in H∞(Uk) that satisfy

(2) f(z)gk(z) = 1 + (zt1 − wt1)hk1(z) + · · ·+ (ztk − wtk)hkk(z), z ∈ Uk.

Once this claim is established, the proof is easily completed as follows. The
functions gm and hmj belong to H∞(B) and satisfy

f̂ ĝm = 1̂ +

m∑
j=1

̂(ztj − wtj )ĥmj .

Since each ẑtj −wtj vanishes on Mw (by the definition of Mw), we obtain f̂ ĝm = 1

on Mw, and consequently f̂ does not vanish on Mw, as required.
Just as in [4], the claim is established by induction on k. The first step, the

construction of g1 and h11, is as follows. We regard 1/f((zt)t∈K) as a bounded
analytic function of zt1 for |zt1 | < 1 and |zt1 − wt1 | < δ, with zt, t ∈ K − {t1}, as
analytic parameters in the range |zt| < 1 for t ∈ K − {t1}, and |ztj − wtj | < δ for
2 ≤ j ≤ m. According to Lemma 5.3 in [4], we can express

1

f(z)
= g1(z) + (zt1 − wt1)h(z), z ∈ U0,
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where g1 ∈ H∞(U1). We set

h11(z) = [f(z)g1(z)− 1]/(zt1 − wt1), z ∈ U1,

so that (2) is valid for k = 1. Note that h11 = −hf on U0. Consequently h11 is
bounded and analytic on U0. The defining formula then shows that h11 is analytic
on all of U1, and since |zt1 − wt1 | ≥ δ on U1 − U0, h11 is bounded on U1.

Now suppose that 2 ≤ k ≤ m, and that there are functions gk−1 and hk−1,j (1 ≤
j ≤ k − 1) that satisfy (2) and are appropriately analytic. We apply Lemma 5.3
in [4] to these as functions of ztk , with the other variables regarded as analytic
parameters, to obtain decompositions

gk−1(z) = gk(z) + (ztk − wtk)Gk(z)

and
hk−1,j(z) = hk,j(z) + (ztk − wtk)Hk,j(z), 1 ≤ j ≤ m− 1,

where gk and the hkj ’s are in H∞(Uk−1), and Gk and the Hkj ’s are in H∞(Uk−1).
From the identity (2), with k replaced with k − 1, we obtain

fgk = 1 +

k−1∑
j=1

(ztj − wtj )hkj + (ztk − wtk)[−fGk +

k−1∑
j=1

(ztj − wtj )Hkj ]

on Uk−1. We define

hkk = [fgk − 1−
k−1∑
j=1

(ztj − wtj )hkj ]/(ztk − wtk), z ∈ Uk.

Then (2) is valid. On Uk−1 we have

hkk = −fGk +

k−1∑
j=1

(ztj − wtj )Hkj ,

so that hkk is bounded and analytic on Uk−1. Since |ztk −wtk | ≥ δ on Uk−Uk−1, we
see from the defining formula that hkk ∈ H∞(Uk). This establishes the induction
step, and the proof is complete. �

We do not know the answer to the cluster value problem for other spaces C(K).

Consider the following cluster value problem: Given f∗∗
0 ∈ B

∗∗
, the cluster value

problem for H∞(B) over Au(B) at f∗∗
0 asks whether for all ψ ∈ H∞(B) and τ ∈

Mf∗∗
0
(B) (Mf∗∗

0
(B) = π−1(δf∗∗

0
) for the restriction map π : MH∞(B) → MAu(B)),

can we find a net (fα) ⊂ B such that ψ(fα) → τ (ψ) and fα converges to f∗∗
0 in the

polynomial-star topology, i.e. the smallest topology that makes every extension of
a polynomial on X to X∗∗ continuous (that we denote by τ (ψ) ∈ ClB(ψ, f

∗∗
0 ))? As

before, clearly ClB(ψ, f
∗∗
0 ) ⊂ ψ̂(Mf∗∗

0
(B)), ∀ψ ∈ H∞(B).

The cluster value problem forH∞(B) over Au(B) coincides with the cluster value
problem for H∞(B) when Au(B) = A(B). Thus when K is compact, Hausdorff
and dispersed, we have a positive answer to the previous cluster value problem for
such C(K) spaces.

The previous problem seems to be highly nontrivial. Since for every infinite com-
pact Hausdorff space K, C(K) contains a subspace Y isometric to c0 (Proposition
4.3.11 in [1]), the fiber M0(BC(K)) is huge (and from Lemma 3.3, also each fiber
Mf0(BC(K)) for f0 ∈ BC(K)). Indeed, according to Theorem 6.6 in [7], there is a
family of distinct characters {τα}α∈B�∞

, such that each τα : H∞(BY ) → C satisfies
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δ0 = τα|A(BY ) = τα|Au(BY ) (because Y is isometric to c0, so A(BY ) = Au(BY )).
Hence {τα}α∈B�∞

⊂ M0(BY ) and therefore {τα ◦ R}α∈B�∞
⊂ M0(BC(K)), where

R is the restriction mapping R : H∞(BC(K)) → H∞(BY ), which is clearly a homo-
morphism. Note that the characters {τα ◦R}α∈B�∞

are all distinct due to Theorem
1.1 in [2], because �∞ is an isometrically injective space (Proposition 2.5.2 in [1]),
so there exists a norm-one linear map S : C(K) → �∞ such that S|c0 = Ic0 .

We prove in Corollary 3.4 that if the latter cluster value problem has an affirma-
tive answer at some point of BC(K), then it has an affirmative answer at all points
of BC(K). For that let us first establish the following lemmas, the first of which is a
folklore result mentioned, e.g., in [14] and [5], but since there seems to be no proof
in the literature we will sketch the proof.

Lemma 3.2. Let f0 ∈ B = BC(K). Then T : B → B given by

T (f) =
f − f0

1− f0 · f
∀f ∈ B

is biholomorphic.

Proof. Set δ0 = ||f0||.
Let us start by showing that T is well defined, i.e., ||Tf || < 1 when ||f || < 1.
Let f ∈ B. We can find δ ∈ (δ0, 1) such that ||f || ≤ δ.
For every t0 ∈ K, let z = f(t0) and c = f0(t0), so that T (f)(t0) =

z−c
1−cz .

Let Δ denote the open unit disk in the complex plane C.
Since σ : (δ · Δ) × (δ0 · Δ) → Δ given by σ(z, c) = z−c

1−cz is continuous, then

σ((δ · Δ) × (δ0 · Δ)) is a compact subset of Δ, so there exists δ1 < 1 so that
σ((δ ·Δ)× (δ0 ·Δ)) ⊂ δ1Δ.

Thus ||Tf || ≤ δ1 < 1.
Let us now show that T is also holomorphic, or equivalently, C-differentiable.

For f ∈ B fixed, the linear mapping L : C(K) → C(K) given by L(h) = 1−|f0|2
(1−f0f)2

h

satisfies that, for h �= 0 small enough,

T (f + h)− T (f)− L(h)

||h|| = (
f + h− f0

1− f0(f + h)
− f − f0

1− f0f
− 1− |f0|2

(1− f0f)2
h)/||h||

= (
1− |f0|2

1− f0f
· h

1− f0(f + h)
− 1− |f0|2

(1− f0f)2
h)/||h||

=
f0h

(1− f0)2(1− f0(f + h))
(1− |f0|2)h/||h||,

which goes to zero as h → 0. Thus T is holomorphic.
Since T clearly has a necessarily holomorphic inverse (S(f) = f+f0

1+f0·f
), we have

that T is a biholomorphic function on B that sends f0 to the function identically
zero. �

Lemma 3.3. The biholomorphic function T from the previous lemma induces a
mapping T̂ on the spectrum MH(B), where H denotes either the algebra Au or the
algebra H∞, that maps Mf0(B) onto M0(B).

Proof. Note that T is a Lipschitz function. Indeed, if f, g ∈ B, then

||T (f)− T (g)|| = || (1− |f0|2)(f − g)

(1− f0f)(1− f0g)
|| ≤ 1

(1− ||f0||)2
||f − g||.
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Thus for every ψ ∈ H(B), ψ ◦ T ∈ H(B). So T̂ : MH(B) → MH(B), given by

T̂ (τ )(ψ) = τ (ψ ◦ T ), ∀τ ∈ MH(B), ψ ∈ H(B),

is well defined. Moreover, given τ ∈ Mf0(B) and ψ ∈ Au(B),

T̂ (τ )(ψ) = τ (ψ ◦ T ) = (ψ ◦ T )(f0) = ψ(0),

i.e., T̂ (τ ) ∈ M0(B), for every τ ∈ Mf0(B).
Now, given τ ∈ M0(B) it is clear that τ̂ : H(B) → C given by

τ̂ (ψ) = τ (ψ ◦ T−1), ∀ψ ∈ H(B),

is in MH(B), actually in Mf0(B), and ∀ ψ ∈ H(B),

T̂ (τ̂)(ψ) = τ̂ (ψ ◦ T ) = τ (ψ),

i.e., T̂ (τ̂) = τ. �

The reader can easily check that the previous mapping T̂ is actually a homeo-
morphism.

Corollary 3.4. For X = C(K), the cluster value theorem of H∞(B) over Au(B) at
0 is equivalent to the cluster value theorem of H∞(B) over Au(B) at every f0 ∈ B.

Proof. Let f0 ∈ B and set T as in Lemma 3.2. Then, ∀ ψ ∈ H∞(B),

ψ̂(M0(B)) = ψ̂ ◦ T̂ (Mf0(B)) = ψ̂ ◦ T (Mf0(B)),

ClB(ψ, 0) = ClB(ψ ◦ T, f0),

because ψ ◦ T ∈ H∞(B) too, and T−1(f) = (f + f0)
∑∞

n=0(−f0f)
n ∀f ∈ BC(K) is

polynomially-star continuous, because sums and norm limits of polynomially-star
continuous maps are polynomially-star continuous, as well as multiplication by a
fixed element of C(K) (see p. 312 in [9]). �

We now argue that we can extend the previous conclusions to the open unit ball
of the second dual of C(K):

In the statement of Lemma 3.2, we can rewrite f−f0
1−f0·f

as (f − f0)
∑∞

n=0(f0f)
n.

Since it is known that C(K)∗∗ is a commutative C∗-algebra that extends the C∗

structure of C(K) (see pp. 310-311 in [9] and p. 43 in [13]), then Lemma 3.2 extends
in the following manner.

Lemma 3.5. Given f∗∗
0 ∈ BC(K)∗∗ , let Tf∗∗

0
: BC(K)∗∗ → BC(K)∗∗ be given by

Tf∗∗
0
(f∗∗) = (f∗∗ − f∗∗

0 )
∞∑
n=0

(f∗∗
0 f∗∗)n ∀f∗∗ ∈ BC(K)∗∗ .

Then Tf∗∗
0

is biholomorphic.

Similarly, we clearly obtain the following analogues of Lemma 3.3 and Corollary
3.4.

Lemma 3.6. For each f∗∗
0 ∈ BC(K)∗∗ , the biholomorphic function Tf∗∗

0
from the

previous lemma induces a mapping T̂f∗∗
0

on the spectrum MH(B∗∗), where H denotes
either the algebra Au or the algebra H∞, that maps Mf∗∗

0
(B∗∗) onto M0(B

∗∗).
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Corollary 3.7. For X = C(K), the cluster value theorem of H∞(B) over Au(B)
at 0 is equivalent to the cluster value theorem of H∞(B) over Au(B) at every
f∗∗
0 ∈ BC(K)∗∗ .

Note that this last result is actually a consequence of Corollary 3.4 since the
double dual of a space of continuous functions is again a space of continuous func-
tions.
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