Graded 3-Calabi-Yau algebras as Ore extensions of 2-Calabi-Yau algebras
HTML articles powered by AMS MathViewer
- by Ji-Wei He, Fred Van Oystaeyen and Yinhuo Zhang
- Proc. Amer. Math. Soc. 143 (2015), 1423-1434
- DOI: https://doi.org/10.1090/S0002-9939-2014-12336-7
- Published electronically: November 12, 2014
- PDF | Request permission
Abstract:
We study a class of graded algebras obtained from Ore extensions of graded Calabi-Yau algebras of dimension 2. It is proved that these algebras are graded Calabi-Yau and graded coherent. The superpotentials associated to these graded Calabi-Yau algebras are also constructed.References
- Roland Berger, Gerasimov’s theorem and $N$-Koszul algebras, J. Lond. Math. Soc. (2) 79 (2009), no. 3, 631–648. MR 2506690, DOI 10.1112/jlms/jdp005
- Raf Bocklandt, Graded Calabi Yau algebras of dimension 3, J. Pure Appl. Algebra 212 (2008), no. 1, 14–32. MR 2355031, DOI 10.1016/j.jpaa.2007.03.009
- Raf Bocklandt, Travis Schedler, and Michael Wemyss, Superpotentials and higher order derivations, J. Pure Appl. Algebra 214 (2010), no. 9, 1501–1522. MR 2593679, DOI 10.1016/j.jpaa.2009.07.013
- Michel Dubois-Violette, Multilinear forms and graded algebras, J. Algebra 317 (2007), no. 1, 198–225. MR 2360146, DOI 10.1016/j.jalgebra.2007.02.007
- V. Ginzburg, Calabi-Yau algebras, arXiv:math/0612139.
- N. S. Gopalakrishnan and R. Sridharan, Homological dimension of Ore-extensions, Pacific J. Math. 19 (1966), 67–75. MR 200324
- B. V. Greenberg and W. V. Vasconcelos, Coherence of polynomial rings, Proc. Amer. Math. Soc. 54 (1976), 59–64. MR 417164, DOI 10.1090/S0002-9939-1976-0417164-2
- Ji-Wei He, Fred Van Oystaeyen, and Yinhuo Zhang, Hopf algebra actions on differential graded algebras and applications, Bull. Belg. Math. Soc. Simon Stevin 18 (2011), no. 1, 99–111. MR 2809906
- Ji-Wei He, Fred Van Oystaeyen, and Yinhuo Zhang, Deformations of Koszul Artin-Schelter Gorenstein algebras, Manuscripta Math. 141 (2013), no. 3-4, 463–483. MR 3062595, DOI 10.1007/s00229-012-0580-z
- Hiroyuki Minamoto and Izuru Mori, The structure of AS-Gorenstein algebras, Adv. Math. 226 (2011), no. 5, 4061–4095. MR 2770441, DOI 10.1016/j.aim.2010.11.004
- Christopher Phan, The Yoneda algebra of a graded Ore extension, Comm. Algebra 40 (2012), no. 3, 834–844. MR 2899911, DOI 10.1080/00927872.2010.539584
- Dmitri Piontkovski, Coherent algebras and noncommutative projective lines, J. Algebra 319 (2008), no. 8, 3280–3290. MR 2408318, DOI 10.1016/j.jalgebra.2007.07.010
- A. Polishchuk, Noncommutative proj and coherent algebras, Math. Res. Lett. 12 (2005), no. 1, 63–74. MR 2122731, DOI 10.4310/MRL.2005.v12.n1.a7
- S. Paul Smith, Some finite-dimensional algebras related to elliptic curves, Representation theory of algebras and related topics (Mexico City, 1994) CMS Conf. Proc., vol. 19, Amer. Math. Soc., Providence, RI, 1996, pp. 315–348. MR 1388568
- S. P. Smith, A 3-Calabi-Yau algebra with $G_2$ symmetry constructed from the Octonions, arXiv:1104.3824v1.
- J. Soublin, Un anneau cohérent dont l’anneau des polynômes n’est pas cohérent, C. R. Acad. Sci. Paris Sér. A-B 267 (1968), A241–A243.
- James J. Zhang, Non-Noetherian regular rings of dimension $2$, Proc. Amer. Math. Soc. 126 (1998), no. 6, 1645–1653. MR 1459158, DOI 10.1090/S0002-9939-98-04480-3
- James J. Zhang, Quadratic algebras with few relations, Glasgow Math. J. 39 (1997), no. 3, 323–332. MR 1484574, DOI 10.1017/S0017089500032249
Bibliographic Information
- Ji-Wei He
- Affiliation: Department of Mathematics, Shaoxing College of Arts and Sciences, Shaoxing Zhejiang 312000, People’s Republic of China; and Department of Mathematics and Computer Science, University of Antwerp, Middelheimlaan 1, B-2020 Antwerp, Belgium
- MR Author ID: 710882
- Email: jwhe@usx.edu.cn
- Fred Van Oystaeyen
- Affiliation: Department of Mathematics and Computer Science, University of Antwerp, Middelheimlaan 1, B-2020 Antwerp, Belgium
- MR Author ID: 176900
- Email: fred.vanoystaeyen@ua.ac.be
- Yinhuo Zhang
- Affiliation: Department WNI, University of Hasselt, Universitaire Campus, 3590 Diepenbeek, Belgium
- MR Author ID: 310850
- ORCID: 0000-0002-0551-1091
- Email: yinhuo.zhang@uhasselt.be
- Received by editor(s): March 16, 2012
- Received by editor(s) in revised form: February 17, 2013, and August 13, 2013
- Published electronically: November 12, 2014
- Communicated by: Birge Huisgen-Zimmermann
- © Copyright 2014
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 143 (2015), 1423-1434
- MSC (2010): Primary 16S37, 16S38, 16E65
- DOI: https://doi.org/10.1090/S0002-9939-2014-12336-7
- MathSciNet review: 3314057