Iterated hyper-extensions and an idempotent ultrafilter proof of Rado’s Theorem
HTML articles powered by AMS MathViewer
- by Mauro Di Nasso
- Proc. Amer. Math. Soc. 143 (2015), 1749-1761
- DOI: https://doi.org/10.1090/S0002-9939-2014-12342-2
- Published electronically: December 8, 2014
- PDF | Request permission
Abstract:
By using nonstandard analysis, and in particular iterated hyper-extensions, we give foundations to a peculiar way of manipulating ultrafilters on the natural numbers and their pseudo-sums. The resulting formalism is suitable for applications in Ramsey theory of numbers. To illustrate the use of our technique, we give a (rather) short proof of Milliken-Taylor’s Theorem and a ultrafilter version of Rado’s Theorem about partition regularity of diophantine equations.References
- David Ballard and Karel Hrbáček, Standard foundations for nonstandard analysis, J. Symbolic Logic 57 (1992), no. 2, 741–748. MR 1169206, DOI 10.2307/2275304
- Vieri Benci, A construction of a nonstandard universe, Advances in dynamical systems and quantum physics (Capri, 1993) World Sci. Publ., River Edge, NJ, 1995, pp. 11–21. MR 1414687
- Ben Barber, Neil Hindman, and Imre Leader, Partition regularity in the rationals, J. Combin. Theory Ser. A 120 (2013), no. 7, 1590–1599. MR 3092686, DOI 10.1016/j.jcta.2013.05.011
- Vitaly Bergelson and Neil Hindman, Nonmetrizable topological dynamics and Ramsey theory, Trans. Amer. Math. Soc. 320 (1990), no. 1, 293–320. MR 982232, DOI 10.1090/S0002-9947-1990-0982232-5
- Greg Cherlin and Joram Hirschfeld, Ultrafilters and ultraproducts in non-standard analysis, Contributions to non-standard analysis (Sympos., Oberwolfach, 1970), Studies in Logic and the Foundations of Mathematics, Vol. 69, North-Holland, Amsterdam, 1972, pp. 261–279. MR 0485344
- C. C. Chang and H. J. Keisler, Model theory, 3rd ed., Studies in Logic and the Foundations of Mathematics, vol. 73, North-Holland Publishing Co., Amsterdam, 1990. MR 1059055
- Mauro Di Nasso, ${}^\ast \textrm {ZFC}$: an axiomatic ${}^\ast$approach to nonstandard methods, C. R. Acad. Sci. Paris Sér. I Math. 324 (1997), no. 9, 963–967 (English, with English and French summaries). MR 1451233, DOI 10.1016/S0764-4442(97)87868-8
- Mauro Di Nasso, An axiomatic presentation of the nonstandard methods in mathematics, J. Symbolic Logic 67 (2002), no. 1, 315–325. MR 1889553, DOI 10.2178/jsl/1190150046
- Vieri Benci and Mauro Di Nasso, Alpha-theory: an elementary axiomatics for nonstandard analysis, Expo. Math. 21 (2003), no. 4, 355–386. MR 2022004, DOI 10.1016/S0723-0869(03)80038-5
- Mauro Di Nasso, $\text {ZFC}[\Omega ]$: A nonstandard set theory where all sets have nonstandard extensions (abstract), Bull. Symb. Logic, vol. 7, 2001, p. 138.
- Mauro Di Nasso, Hyper-natural numbers as ultrafilters, unpublished manuscript.
- Robert Goldblatt, Lectures on the hyperreals, Graduate Texts in Mathematics, vol. 188, Springer-Verlag, New York, 1998. An introduction to nonstandard analysis. MR 1643950, DOI 10.1007/978-1-4612-0615-6
- Neil Hindman, Imre Leader, and Dona Strauss, Open problems in partition regularity, Combin. Probab. Comput. 12 (2003), no. 5-6, 571–583. Special issue on Ramsey theory. MR 2037071, DOI 10.1017/S0963548303005716
- Neil Hindman, Imre Leader, and Dona Strauss, Infinite partition regular matrices: solutions in central sets, Trans. Amer. Math. Soc. 355 (2003), no. 3, 1213–1235. MR 1938754, DOI 10.1090/S0002-9947-02-03191-4
- N. Hindman and D. Strauss, Algebra in the Stone-Čech Compactification, Theory and Applications (2nd edition), W. de Gruyter, 2011.
- Vladimir Kanovei and Michael Reeken, Nonstandard analysis, axiomatically, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2004. MR 2093998, DOI 10.1007/978-3-662-08998-9
- L. Luperi Baglini, Hyperintegers and Nonstandard Techniques in Combinatorics of Numbers, Ph.D. dissertation, 2012, University of Siena, arXiv:1212.2049.
- Amir Maleki, Solving equations in $\beta \Bbb N$, Semigroup Forum 61 (2000), no. 3, 373–384. MR 1832314, DOI 10.1007/PL00006036
- Siu-Ah Ng and Hermann Render, The Puritz order and its relationship to the Rudin-Keisler order, Reuniting the antipodes—constructive and nonstandard views of the continuum (Venice, 1999) Synthese Lib., vol. 306, Kluwer Acad. Publ., Dordrecht, 2001, pp. 157–166. MR 1895391
Bibliographic Information
- Mauro Di Nasso
- Affiliation: Dipartimento di Matematica, Università di Pisa, Largo Bruno Pontecorvo 5, 56127 Pisa, Italy
- MR Author ID: 610241
- Email: dinasso@dm.unipi.it
- Received by editor(s): April 12, 2013
- Received by editor(s) in revised form: July 30, 2013
- Published electronically: December 8, 2014
- Communicated by: Mirna Džamonja
- © Copyright 2014
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 143 (2015), 1749-1761
- MSC (2010): Primary 03H05; Secondary 03E05, 05D10, 11D04
- DOI: https://doi.org/10.1090/S0002-9939-2014-12342-2
- MathSciNet review: 3314087