MINIMALLY ALMOST PERIODIC GROUP TOPOLOGIES
ON COUNTABLY INFINITE ABELIAN GROUPS

S. S. GABRIYELYAN

(Communicated by Ken Ono)

Abstract. We obtain a positive answer to a question by Comfort: Every countable Abelian group G of infinite exponent admits a complete Hausdorff minimally almost periodic group topology.

1. Introduction

For an Abelian topological group G, G^\wedge denotes the group of all continuous characters on G endowed with the compact-open topology. Denote by $n(G) = \bigcap_{\chi \in G^\wedge} \ker \chi$ the von Neumann radical of G. Following von Neumann [21], the group G is called minimally almost periodic (MinAP) if $n(G) = G$, and G is called maximally almost periodic (MAP) if $n(G) = 0$.

Let G be an infinite Abelian group. Denote by $\mathcal{N}\mathcal{R}(G)$ the set of all subgroups H of G for which there exists a non-discrete Hausdorff group topology τ on G such that the von Neumann radical of (G, τ) is H, i.e., $n(G, \tau) = H$. Let $\mathcal{N}\mathcal{R}\mathcal{C}(G) \subseteq \mathcal{N}\mathcal{R}(G)$ be the set of all subgroups H of G for which there exists a topology as above which is also complete.

Let G be an Abelian topological group. The richness of its dual group G^\wedge is one of the most important properties of G which plays a crucial role in Harmonic Analysis (see [19,20]). The von Neumann radical measures this richness, thus the following general question is important:

Question 1.1 ([12, Problem 2]). Describe the sets $\mathcal{N}\mathcal{R}(G)$ and $\mathcal{N}\mathcal{R}\mathcal{C}(G)$.

One can show (see [14, Theorem 1]) that every infinite Abelian group admits a complete non-trivial Hausdorff group topology with trivial von Neumann radical. Thus, the trivial group \{0\} belongs to $\mathcal{N}\mathcal{R}\mathcal{C}(G)$ for every infinite Abelian group G, i.e., $\mathcal{N}\mathcal{R}\mathcal{C}(G)$ is never empty. A much deeper question is whether any infinite Abelian group admits a Hausdorff group topology with non-zero von Neumann radical. The positive answer was given by Ajtai, Havas and Komlós [1]. Using the method of T-sequences, Protasov and Zelenyuk [26] strengthened their result as follows: every infinite Abelian group admits a complete sequential Hausdorff group topology for which characters do not separate points. So $\mathcal{N}\mathcal{R}\mathcal{C}(G) \neq \{\{0\}\}$ for every infinite Abelian group G.
Question 1.1 has two interesting extreme cases. Denote by $S(G)$ the set of all subgroups of an infinite Abelian group G.

Question 1.2 ([12 Problem 4]). Describe all infinite Abelian groups G such that $\mathcal{N}R(G) = S(G)$ (respectively, $\mathcal{N}RC(G) = S(G)$).

The second and, perhaps, the most interesting special case of Question 1.1 is the following:

Question 1.3 ([12 Problem 5]). Describe all infinite Abelian groups G such that $G \in \mathcal{N}R(G)$ (or $G \in \mathcal{N}RC(G)$).

Note that the existence of Abelian groups admitting no non-zero continuous characters has been known for a long time. The classic example of linear topological spaces that (when viewed as Abelian topological groups) have no non-trivial continuous characters was given by Day in [7]. There are other examples in [19, 23.32]. Nienhuys [22] showed the existence of a metric solenoidal monothetic MinAP group (see also [23]). Prodanov [24] gave an elementary example of a MinAP group.

Recall that an Abelian group G is of finite exponent or bounded if there exists a positive integer n such that $ng = 0$ for every $g \in G$. The minimal integer n with this property is called the exponent of G and is denoted by $\exp(G)$. When G is not bounded, we write $\exp(G) = \infty$ and say that G is of infinite exponent or unbounded.

Protasov [25] posed the question of whether every infinite Abelian group admits a minimally almost periodic group topology. Using a result of Graev [18], Remus [28] proved that for every natural number n there exists a connected MinAP group which is algebraically generated by elements of order n. On the other hand, he gave (see [6]) a simple example of a group G of finite exponent which does not admit any Hausdorff group topology τ such that (G, τ) is minimally almost periodic. So, for groups of finite exponent the answer to Protasov’s question is negative. This justifies the following problems:

Question 1.4 ([6 Problem 521]). Does every Abelian group which is not of bounded exponent admit a minimally almost periodic topological group topology? What about the countable case?

Question 1.5 ([27 Question 2.6.1]). Let G be a torsion free countable Abelian group. Does there exist a Hausdorff group topology on G with only zero character?

The main goal of the article is to give the positive answer to Comfort’s Question 1.4 for the countable case and, hence, to Protasov-Zelenyuk’s Question 1.5.

Theorem 1.6. Every countable Abelian group of infinite exponent admits a complete sequential Hausdorff minimally almost periodic group topology.

A complete characterization of bounded Abelian groups which admit Hausdorff MinAP group topologies is given in [15]: An infinite bounded Abelian group G admits a MinAP group topology if and only if all its leading Ulm-Kaplansky invariants are infinite. This result with Theorem 1.6 gives a complete description of countably infinite Abelian groups admitting a Hausdorff MinAP group topology. This description has several applications (see [16, 17]).

2. **Proof of Theorem 1.6**

Let G be an Abelian group. If G is endowed with the discrete topology, we denote it by G_d. If κ is a cardinal number, we denote by $G^{(\kappa)}$ the direct sum of κ
copies of the group G. The subgroup of G generated by a subset A is denoted by $\langle A \rangle$.

Let X be an Abelian topological group. An element $x \in X$ is called a topological generator of X if $\langle x \rangle$ is a dense subgroup of X.

Following [9], for a sequence $d = \{d_n\}_{n=0}^{\infty}$ of elements of an Abelian group G we set

$$s_d((G_d)^\wedge) := \{x \in (G_d)^\wedge : (d_n, x) \to 1 \text{ in } T\}.$$

Following Protasov and Zelenyuk (see [20],[27]), we say that a sequence $d = \{d_n\}$ in an Abelian group G is a T-sequence if there is a Hausdorff group topology on G in which d_n converges to zero. The group G equipped with the finest group topology with this property is denoted by (G, τ_d).

Theorem 2.1 ([27 Theorem 2.1.5]). Let G be a subgroup of an Abelian Hausdorff topological group S. Suppose a sequence $\{a_n\}_{n=0}^{\infty}$ converges to zero and a sequence $\{b_n\}_{n=0}^{\infty}$ converges to an element $b \in S$ satisfying the condition $(b) \cap G = \{0\}$. For every $n \geq 0$, set

$$d_{2n} = a_n \quad \text{and} \quad d_{2n+1} = b_n.$$

Then $d = \{d_k\}_{k=0}^{\infty}$ is a T-sequence in G.

Recall (see [3]) that a sequence $d = \{d_n\}$ is called a TB-sequence in an Abelian group G if there is a precompact Hausdorff group topology on G in which $d_n \to 0$. The next lemma is a reformulation of Lemma 5.2 in [4]; for the sake of completeness we prove it.

Lemma 2.2. Let $\pi : G \to X$ be a continuous monomorphism from a discrete countably infinite Abelian group G to a compact metrizable Abelian group X with dense image. For a sequence $d = \{d_n\}$ in G the following assertions are equivalent:

(i) $\pi^\wedge(X^\wedge) \subseteq s_d(G^\wedge)$, where π^\wedge is the adjoint homomorphism of π.

(ii) $\pi(d_n)$ converges to zero in X.

In particular, if (i) and (ii) hold, then d is a TB-sequence in G.

Proof. (i)\Rightarrow(ii) By definition and assumption, we have $(\pi(d_n), y) = (d_n, \pi^\wedge(y)) \to 1$ for every $y \in X^\wedge$. But this is possible only if $\pi(d_n) \to 0$, since the topology of X is determined by its continuous characters $y \in X^\wedge$.

(ii)\Rightarrow(i) Let $y \in X^\wedge$. Then $(\pi^\wedge(y), d_n) = (y, \pi(d_n)) \to 1$. Thus $\pi^\wedge(y) \in s_d(G^\wedge)$, and hence $\pi^\wedge(X^\wedge) \subseteq s_d(G^\wedge)$.

If (i) and (ii) hold, then $s_d(G^\wedge)$ is dense in X because π^\wedge has dense image by [19, 24.41]. Thus d is a TB-sequence in G (see [9]).

We use this to prove the following theorem.

Theorem 2.3. Let a countably infinite Abelian group G be isomorphic to a dense subgroup of a compact connected second countable Abelian group X. Then G admits a complete sequential Hausdorff minimally almost periodic group topology generated by a T-sequence.

Proof. Let $\pi : G_d \to X$ be a continuous monomorphism with dense image. So π^\wedge is injective and has dense image. Since X^\wedge is countable [19, 24.15], Theorem 1.4 of [8] (or alternatively, Theorem 3.1 of [5]) implies that there exists a sequence $a = \{a_n\}_{n=0}^{\infty}$ in G such that $s_a((G_d)^\wedge) = \pi^\wedge(X^\wedge)$. By Lemma 2.2, $\pi(a_n) \to 0$ in X.
Denote by \(\Omega \) the set of all topological generators of \(X \). The set \(\Omega \) is a dense \(G_δ \)-subset of \(X \) as it coincides with the intersection \(\bigcap_{\chi \in X^\setminus\{0\}} \chi^{-1}(T \setminus (Q/Z)) \). So \(\Omega \) has size continuum. Hence there exists \(b \in \Omega \) such that \(\pi(G) \cap \langle b \rangle = \{0\} \).

Let a sequence \(b = \{b_n\}_{n=0}^\infty \) in \(G \) be such that \(\pi(b_n) \) converges to \(b \) in \(X \). Then, by Theorem 2.4, the sequence \(d = \{d_n\}_{n=0}^\infty \), where for every \(n \geq 0 \)
\[
d_{2n} = a_n \quad \text{and} \quad d_{2n+1} = b_n
\]
is a \(T \)-sequence in \(G \).

By [13, Theorem 4], to show that \((G, \tau_\mathcal{D}) \) is MinAP, it is enough to prove that \(s_\mathcal{D} ((G_\mathcal{D})^\wedge) = \{0\} \). Note that
\[
s_\mathcal{D} ((G_\mathcal{D})^\wedge) = s_\mathcal{D} ((G_\mathcal{D})^\wedge) \cap s_\mathcal{D} ((G_\mathcal{D})^\wedge) = \pi^\wedge (X^\wedge) \cap s_\mathcal{D} ((G_\mathcal{D})^\wedge)
\]
by the choice of \(\mathcal{D} \). Now if \(x \in s_\mathcal{D} ((G_\mathcal{D})^\wedge) \), then \(x = \pi^\wedge(y) \) for some \(y \in X^\wedge \) and \((b_n, x) \to 1 \). Since \((b_n, x) = (b_n, \pi^\wedge(y)) = (\pi(b_n), y) \to (b, y) \),
we obtain \((b, y) = 1 \). But since \(b \) is a topological generator of \(X \), this immediately yields \(y = 0 \). Thus \(x = 0 \) and \(s_\mathcal{D} ((G_\mathcal{D})^\wedge) \) is trivial.

Finally, Theorems 2.3.1 and 2.3.11 of [27] implies that the group \((G, \tau_\mathcal{D}) \) is sequential and complete.

We are now ready to prove Theorem 1.6

Proof of Theorem 1.6 Corollary 9.4 of [10] implies that \(G \) is isomorphic to a dense subgroup of \(T^\mathbb{N} \). Now the assertion immediately follows from Theorem 2.3.

For the sake of completeness we prove the next folklore proposition:

Proposition 2.4. If an Abelian topological group \(G \) has a family of minimally almost periodic subgroups \(\{G_i : i \in I\} \), such that their (not necessarily direct) sum \(\sum_{i \in I} G_i \) is dense in \(G \), then \(G \) is MinAP.

Proof. Set \(H := \sum_{i \in I} G_i \). Let \(\chi \in G^\wedge \). By assumption, \(\chi|_{G_i} = 0 \) for every \(i \in I \).
Hence \(\chi|_H = 0 \). Since \(H \) is dense in \(G \), we obtain \(\chi = 0 \). Thus \(G \) is MinAP.

Corollary 2.5. Let \(\{G_i\}_{i \in I} \) be a family of Hausdorff MinAP Abelian groups. Then the direct sum \(\bigoplus_{i \in I} G_i \) endowed with the product topology is also MinAP.

Corollary 2.6. For every infinite cardinal \(\kappa \) and each natural number \(m \), the group \(G := \mathbb{Z}(m)^{(\kappa)} \) admits a Hausdorff MinAP group topology.

Proof. By [11,26], the group \(H := \mathbb{Z}(m)^{(\omega)} \) admits a Hausdorff MinAP group topology \(\tau \). Then \((H, \tau)^{(\kappa)} \) endowed with the product topology is MinAP by Corollary 2.5. Note that \(G \cong H^{(\kappa)} \) algebraically. Now applying Corollary 2.5 we obtain that the group \(G \) admits a Hausdorff MinAP group topology.

The main open problem still remaining is:

Question 2.7. Let \(G \) be an uncountable Abelian group of infinite exponent (for example, \(G \) is an uncountable torsion free Abelian group). Does \(G \) admit a Hausdorff MinAP group topology?

However, we prove the following special case. The set of all prime numbers we denote by \(\mathbb{P} \).
Proposition 2.8. Let \(G = \bigoplus_{i \in I} G_i \), where \(I \) is a non-empty set of indices and \(G_i \) is a nonzero countable Abelian group for every \(i \in I \). If \(G \) is of infinite exponent, then \(G \) admits a Hausdorff MinAP group topology.

Proof. The idea of our proof is the following. Using purely combinatorial arguments we show first that \(G = G' \oplus G'' \), where \(G' \) is a direct sum of unbounded countable groups, while \(G'' \) is a direct sum of homogeneous bounded groups \(H_j \) (i.e., each \(H_j \) is a direct sum of infinitely many copies of some fixed cyclic \(p \)-group, where \(p \) may depend on \(j \)). Then we apply Corollary 2.5 (via Theorem 1.6) and Corollary 2.6.

Let \(I_1 \) be the set of all indices \(i \) such that \(G_i \) is of finite exponent. Set \(I_2 = I \setminus I_1 \).

We distinguish between two cases.

Case 1. \(I_1 = \emptyset \). By Theorem 1.6 for every \(i \in I \) the group \(G_i \) admits a Hausdorff MinAP group topology. Thus \(G \) also admits a Hausdorff MinAP group topology by Corollary 2.6.

Case 2. \(I_1 \neq \emptyset \). For every \(i \in I_1 \), the group \(G_i \) is a direct sum of finite cyclic groups \([11, 11.2]:\)

\[
G_i = \bigoplus_{(p,n) \in A_i} \mathbb{Z}(p^n)^{k_i(p,n)},
\]

where \(A_i \subset \mathbb{P} \times \mathbb{N} \) is finite and \(k_i(p,n) \) are non-zero cardinal numbers.

Set \(C := \bigcup_{i \in I_1} A_i \) and \(k_{i(p,n)} := \sum_{i \in I_1} k_i(p,n) \). Put \(C_1 := \{(p,n) \in C : k_{i(p,n)} < \infty \} \) and \(C_2 = C \setminus C_1 \). Then we can represent the group \(G \) in the following form:

\[
G = \left(\bigoplus_{(p,n) \in C_1} \mathbb{Z}(p^n)^{k_i(p,n)} \right) \oplus \bigoplus_{(p,n) \in C_2} \mathbb{Z}(p^n)^{k_i(p,n)} \oplus \bigoplus_{i \in I_2} G_i.
\]

Set \(H := \bigoplus_{(p,n) \in C_1} \mathbb{Z}(p^n)^{k_{i(p,n)}} \) and \(H_{p,n} := \mathbb{Z}(p^n)^{k_{i(p,n)}} \) for \((p,n) \in C_2 \). By Theorem 1.6 and Corollary 2.6, for each \((p,n) \in C_2 \) and each \(i \in I_2 \), the groups \(H_{p,n} \) and \(G_i \) admit a Hausdorff MinAP group topology.

Subcase 2(a). Assume that \(H \) is either countably infinite (and hence \(\exp(H) = \infty \)) or trivial. By Theorem 1.6 the group \(H \) in (2.1) admits a Hausdorff MinAP group topology. Thus \(G \) also admits a Hausdorff MinAP group topology by Corollary 2.5.

Subcase 2(b). Let \(H \) be non-zero and finite. If \(I_2 \neq \emptyset \), take arbitrarily \(i_0 \in I_2 \). Then we have

\[
G = (H \oplus G_{i_0}) \oplus \bigoplus_{(p,n) \in C_2} H_{p,n} \oplus \bigoplus_{i \in I_2, i \neq i_0} G_i.
\]

By Theorem 1.6, the group \(H \oplus G_{i_0} \) in (2.2) admits a Hausdorff MinAP group topology. Hence \(G \) also admits a Hausdorff MinAP group topology by Corollary 2.5.

Assume that \(I_2 = \emptyset \). Then \(C_2 \) is infinite since \(\exp(G) = \infty \). Since \(H_{p,n} \cong \mathbb{Z}(p^n) \oplus H_{p,n} \) we have

\[
G \cong \left(H \oplus \bigoplus_{(p,n) \in C_2} \mathbb{Z}(p^n) \right) \oplus \bigoplus_{(p,n) \in C_2} H_{p,n}.
\]
Also in this case, by Theorem 1.6, the group \(H \oplus \bigoplus_{(p,n) \in C_2} \mathbb{Z}(p^n) \) in (2.3) admits a Hausdorff MinAP group topology. Therefore \(G \) admits a Hausdorff MinAP group topology by Corollary 2.5.

Since a divisible group is a direct sum of full rational groups \(\mathbb{Q} \) and groups of the form \(\mathbb{Z}(p^\infty) \) [11, Theorem 19.1], we obtain the following:

Corollary 2.9.
(i) \(\mathcal{B} \) Every free Abelian group admits a Hausdorff MinAP group topology.
(ii) \(\mathcal{B} \) Each divisible Abelian group admits a Hausdorff MinAP group topology.
(iii) Every linear space over \(\mathbb{R} \) or \(\mathbb{C} \) admits a Hausdorff MinAP group topology.
(iv) The circle group \(\mathbb{T} \) admits a Hausdorff MinAP group topology.

Acknowledgments

It is a pleasure to thank the referee for the careful reading and the helpful suggestions. The author thanks D. Dikranjan for pointing out the article [10].

References

Department of Mathematics, Ben-Gurion University of the Negev, Beer-Sheva P.O. 653, Israel

E-mail address: saak@math.bgu.ac.il