$L^p$-nondegenerate Radon-like operators with vanishing rotational curvature
HTML articles powered by AMS MathViewer
- by Philip T. Gressman
- Proc. Amer. Math. Soc. 143 (2015), 1595-1604
- DOI: https://doi.org/10.1090/S0002-9939-2014-12407-5
- Published electronically: November 24, 2014
- PDF | Request permission
Abstract:
We consider the $L^p \rightarrow L^q$ mapping properties of a model family of Radon-like operators integrating functions over $n$-dimensional submanifolds of $\mathbb {R}^{2n}$. It is shown that nonvanishing rotational curvature is never generic when $n \geq 2$ and is, in fact, impossible for all but finitely many values of $n$. Nevertheless, operators satisfying the same $L^p \rightarrow L^q$ estimates as the “nondegenerate” case (modulo the endpoint) are dense in the model family for all $n$.References
- J. F. Adams, Peter D. Lax, and Ralph S. Phillips, On matrices whose real linear combinations are non-singular, Proc. Amer. Math. Soc. 16 (1965), 318–322. MR 179183, DOI 10.1090/S0002-9939-1965-0179183-6
- J. F. Adams, Peter D. Lax, and Ralph S. Phillips, Correction to “On matrices whose real linear combinations are nonsingular”, Proc. Amer. Math. Soc. 17 (1966), 945–947. MR 201460, DOI 10.1090/S0002-9939-1966-0201460-1
- Jean Bourgain and Lawrence Guth, Bounds on oscillatory integral operators, C. R. Math. Acad. Sci. Paris 349 (2011), no. 3-4, 137–141 (English, with English and French summaries). MR 2769895, DOI 10.1016/j.crma.2010.12.004
- Michael Christ, Restriction of the fourier transform to submanifolds of low codimension, Ph.D. Thesis, 1982.
- Michael Christ, Convolution, curvature, and combinatorics: a case study, Internat. Math. Res. Notices 19 (1998), 1033–1048. MR 1654767, DOI 10.1155/S1073792898000610
- Spyridon Dendrinos, Norberto Laghi, and James Wright, Universal $L^p$ improving for averages along polynomial curves in low dimensions, J. Funct. Anal. 257 (2009), no. 5, 1355–1378. MR 2541272, DOI 10.1016/j.jfa.2009.05.011
- M. Burak Erdoğan and Richard Oberlin, Estimates for the $X$-ray transform restricted to 2-manifolds, Rev. Mat. Iberoam. 26 (2010), no. 1, 91–114. MR 2666309, DOI 10.4171/RMI/595
- S. Friedland, J. W. Robbin, and J. H. Sylvester, On the crossing rule, Comm. Pure Appl. Math. 37 (1984), no. 1, 19–37. MR 728265, DOI 10.1002/cpa.3160370104
- Allan Greenleaf and Andreas Seeger, Oscillatory and Fourier integral operators with degenerate canonical relations, Proc. 6th International Conference on Harmonic Analysis and Partial Differential Equations (El Escorial, 2000). 2002, 93–141.
- Philip T. Gressman, Uniform sublevel Radon-like inequalities, J. Geom. Anal. 23 (2013), no. 2, 611–652. MR 3023852, DOI 10.1007/s12220-011-9256-2
- Victor Guillemin and Shlomo Sternberg, Geometric asymptotics, Mathematical Surveys, No. 14, American Mathematical Society, Providence, R.I., 1977. MR 0516965
- Daniel M. Oberlin, Convolution with measures on hypersurfaces, Math. Proc. Cambridge Philos. Soc. 129 (2000), no. 3, 517–526. MR 1780502, DOI 10.1017/S0305004100004552
- D. H. Phong and E. M. Stein, Hilbert integrals, singular integrals, and Radon transforms. I, Acta Math. 157 (1986), no. 1-2, 99–157. MR 857680, DOI 10.1007/BF02392592
- D. H. Phong and E. M. Stein, Hilbert integrals, singular integrals, and Radon transforms. II, Invent. Math. 86 (1986), no. 1, 75–113. MR 853446, DOI 10.1007/BF01391496
- Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
- Betsy Stovall, $L^p$ improving multilinear Radon-like transforms, Rev. Mat. Iberoam. 27 (2011), no. 3, 1059–1085. MR 2895344, DOI 10.4171/RMI/663
- Terence Tao and James Wright, $L^p$ improving bounds for averages along curves, J. Amer. Math. Soc. 16 (2003), no. 3, 605–638. MR 1969206, DOI 10.1090/S0894-0347-03-00420-X
Bibliographic Information
- Philip T. Gressman
- Affiliation: Department of Mathematics, University of Pennsylvania, David Rittenhouse Laboratory, 209 South 33rd Street, Philadelphia, Pennsylvania 19104
- MR Author ID: 690453
- Email: gressman@math.upenn.edu
- Received by editor(s): August 6, 2013
- Published electronically: November 24, 2014
- Additional Notes: The author was partially supported by NSF grant DMS-1101393 and an Alfred P. Sloan Foundation Fellowship.
- Communicated by: Alexander Iosevich
- © Copyright 2014 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 143 (2015), 1595-1604
- MSC (2010): Primary 28A75, 42B20, 42C99
- DOI: https://doi.org/10.1090/S0002-9939-2014-12407-5
- MathSciNet review: 3314072