Generalized dimension estimates for images of porous sets under monotone Sobolev mappings
HTML articles powered by AMS MathViewer
- by Pekka Koskela and Aleksandra Zapadinskaya
- Proc. Amer. Math. Soc. 143 (2015), 2033-2042
- DOI: https://doi.org/10.1090/S0002-9939-2014-12371-9
- Published electronically: December 4, 2014
- PDF | Request permission
Abstract:
We give an essentially sharp estimate in terms of generalized Hausdorff measures for images of porous sets under monotone Sobolev mappings, satisfying suitable Orlicz-Sobolev conditions.References
- Luigi Greco, Tadeusz Iwaniec, and Gioconda Moscariello, Limits of the improved integrability of the volume forms, Indiana Univ. Math. J. 44 (1995), no. 2, 305–339. MR 1355401, DOI 10.1512/iumj.1995.44.1990
- David A. Herron and Pekka Koskela, Mappings of finite distortion: gauge dimension of generalized quasicircles, Illinois J. Math. 47 (2003), no. 4, 1243–1259. MR 2037001
- John D. Howroyd, On the theory of Hausdorff measures in metric spaces, Ph.D. thesis, University College London, 1994.
- Janne Kauhanen, Pekka Koskela, and Jan Malý, On functions with derivatives in a Lorentz space, Manuscripta Math. 100 (1999), no. 1, 87–101. MR 1714456, DOI 10.1007/s002290050197
- Janne Kauhanen, Pekka Koskela, and Jan Malý, Mappings of finite distortion: condition N, Michigan Math. J. 49 (2001), no. 1, 169–181. MR 1827080, DOI 10.1307/mmj/1008719040
- Pekka Koskela, Jan Malý, and Thomas Zürcher, Lusin’s condition N and modulus of continuity, to appear in Adv. Calc. Var. DOI 10.1515/acv-2013-0024.
- Pekka Koskela and Aleksandra Zapadinskaya, Dimension gap under Sobolev mappings, preprint.
- Pekka Koskela, Aleksandra Zapadinskaya, and Thomas Zürcher, Generalized dimension distortion under planar Sobolev homeomorphisms, Proc. Amer. Math. Soc. 137 (2009), no. 11, 3815–3821. MR 2529891, DOI 10.1090/S0002-9939-09-09948-1
- Pekka Koskela, Aleksandra Zapadinskaya, and Thomas Zürcher, Mappings of finite distortion: generalized Hausdorff dimension distortion, J. Geom. Anal. 20 (2010), no. 3, 690–704. MR 2610895, DOI 10.1007/s12220-010-9121-8
- Jan Malý, Absolutely continuous functions of several variables, J. Math. Anal. Appl. 231 (1999), no. 2, 492–508. MR 1669167, DOI 10.1006/jmaa.1998.6246
- Jan Malý and Olli Martio, Lusin’s condition (N) and mappings of the class $W^{1,n}$, J. Reine Angew. Math. 458 (1995), 19–36. MR 1310951, DOI 10.1515/crll.1995.458.19
- Tomi Nieminen, Generalized mean porosity and dimension, Ann. Acad. Sci. Fenn. Math. 31 (2006), no. 1, 143–172. MR 2210114
- Tapio Rajala, Planar Sobolev homeomorphisms and Hausdorff dimension distortion, Proc. Amer. Math. Soc. 139 (2011), no. 5, 1825–1829. MR 2763769, DOI 10.1090/S0002-9939-2010-10464-1
- T. Rajala, A. Zapadinskaya, and T. Zürcher, Generalized Hausdorff dimension distortion in Euclidean spaces under Sobolev mappings, J. Math. Anal. Appl. 384 (2011), no. 2, 468–477. MR 2825200, DOI 10.1016/j.jmaa.2011.05.073
- Arto Salli, On the Minkowski dimension of strongly porous fractal sets in $\textbf {R}^n$, Proc. London Math. Soc. (3) 62 (1991), no. 2, 353–372. MR 1085645, DOI 10.1112/plms/s3-62.2.353
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- D. A. Trocenko, Properties of regions with a nonsmooth boundary, Sibirsk. Mat. Zh. 22 (1981), no. 4, 221–224, 232 (Russian). MR 624419
Bibliographic Information
- Pekka Koskela
- Affiliation: Department of Mathematics and Statistics, University of Jyväskylä, P.O. Box 35 (MaD), FI-40014, Finland
- MR Author ID: 289254
- Email: pkoskela@maths.jyu.fi
- Aleksandra Zapadinskaya
- Affiliation: Department of Mathematical Sciences, University of Cincinnati, 4199 French Hall West, 2815 Commons Way, Cincinnati, Ohio 45221-0025
- Address at time of publication: Department of Mathematics, University of Pisa, Largo Bruno Pontecorvo 5, 56127 Pisa, Italy
- Email: zapadiay@uc.edu, azapadinskaya@mail.dm.unipi.it
- Received by editor(s): March 13, 2013
- Received by editor(s) in revised form: September 25, 2013
- Published electronically: December 4, 2014
- Additional Notes: The authors were partially supported by the Academy of Finland grants 131477 and 263850.
- Communicated by: Jeremy Tyson
- © Copyright 2014
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 143 (2015), 2033-2042
- MSC (2010): Primary 46E35, 26B10, 28A78
- DOI: https://doi.org/10.1090/S0002-9939-2014-12371-9
- MathSciNet review: 3314112