Langlands parameters associated to special maximal parahoric spherical representations
HTML articles powered by AMS MathViewer
- by Manish Mishra
- Proc. Amer. Math. Soc. 143 (2015), 1933-1941
- DOI: https://doi.org/10.1090/S0002-9939-2014-12392-6
- Published electronically: December 19, 2014
- PDF | Request permission
Abstract:
We describe the image, under the local Langlands correspondence for tori, of the characters of a torus which are trivial on its Iwahori subgroup. Let $k$ be a non-archimedian local field. Let $\boldsymbol {G}$ be a connected reductive group defined over $k$, which is quasi-split and split over a tamely ramified extension. Let $K$ be a special maximal parahoric subgroup of $\boldsymbol {G}(k)$. To the class of representations of $\boldsymbol {G}(k)$ having a non-zero vector fixed under $K$, we establish a bijection, in a natural way, with the twisted semisimple conjugacy classes of the inertia fixed subgroup of the dual group $\hat {\boldsymbol {G}}$. These results generalize the well known classical results to the ramified case.References
- A. Borel, Automorphic $L$-functions, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 27–61. MR 546608
- P. Cartier, Representations of $p$-adic groups: a survey, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 111–155. MR 546593
- T. Haines, The stable Bernstein center and test functions for Shimura varieties, arXiv:1304.6293. To appear in the proceedings for the London Mathematical Society - EPSRC Durham Symposium on Automorphic Forms and Galois Representations, Durham, July 18-28, 2011.
- Thomas J. Haines and Sean Rostami, The Satake isomorphism for special maximal parahoric Hecke algebras, Represent. Theory 14 (2010), 264–284. MR 2602034, DOI 10.1090/S1088-4165-10-00370-5
- T. Kaletha, Epelagic $L$-packets and rectifying characters, arXiv:1209.1720
- Robert E. Kottwitz, Stable trace formula: cuspidal tempered terms, Duke Math. J. 51 (1984), no. 3, 611–650. MR 757954, DOI 10.1215/S0012-7094-84-05129-9
- Robert E. Kottwitz, Isocrystals with additional structure. II, Compositio Math. 109 (1997), no. 3, 255–339. MR 1485921, DOI 10.1023/A:1000102604688
- Robert E. Kottwitz and Diana Shelstad, Foundations of twisted endoscopy, Astérisque 255 (1999), vi+190 (English, with English and French summaries). MR 1687096
- Robert Steinberg, Endomorphisms of linear algebraic groups, Memoirs of the American Mathematical Society, No. 80, American Mathematical Society, Providence, R.I., 1968. MR 0230728
- Rainer Weissauer, Endoscopy for $\textrm {GSp}(4)$ and the cohomology of Siegel modular threefolds, Lecture Notes in Mathematics, vol. 1968, Springer-Verlag, Berlin, 2009. MR 2498783, DOI 10.1007/978-3-540-89306-6
- Jiu-Kang Yu, On the local Langlands correspondence for tori, Ottawa lectures on admissible representations of reductive $p$-adic groups, Fields Inst. Monogr., vol. 26, Amer. Math. Soc., Providence, RI, 2009, pp. 177–183. MR 2508725, DOI 10.1090/fim/026/07
- Xinwen Zhu, The geometric Satake correspondence for ramified groups, arXiv:1107.5762
Bibliographic Information
- Manish Mishra
- Affiliation: Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
- Email: mmishra@math.huji.ac.il
- Received by editor(s): April 20, 2013
- Received by editor(s) in revised form: October 15, 2013, and October 25, 2013
- Published electronically: December 19, 2014
- Communicated by: Pham Huu Tiep
- © Copyright 2014 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 143 (2015), 1933-1941
- MSC (2010): Primary 11R39, 20G05, 22E50
- DOI: https://doi.org/10.1090/S0002-9939-2014-12392-6
- MathSciNet review: 3314103