A general form of Green’s Formula and the Cauchy Integral Theorem
HTML articles powered by AMS MathViewer
- by Julià Cufí and Joan Verdera
- Proc. Amer. Math. Soc. 143 (2015), 2091-2102
- DOI: https://doi.org/10.1090/S0002-9939-2014-12418-X
- Published electronically: December 4, 2014
- PDF | Request permission
Abstract:
We prove a general form of Green’s Formula and the Cauchy Integral Theorem for arbitrary closed rectifiable curves in the plane. We use Vituśkin’s localization of singularities method and a decomposition of a rectifiable curve in terms of a sequence of Jordan rectifiable sub-curves due to Carmona and Cufí.References
- Robert B. Burckel, An introduction to classical complex analysis. Vol. 1, Pure and Applied Mathematics, vol. 82, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1979. MR 555733, DOI 10.1007/978-3-0348-9374-9
- Joan Josep Carmona and Julià Cufí, The index of a plane curve and Green’s formula, Rend. Circ. Mat. Palermo (2) 53 (2004), no. 1, 103–128. MR 2021679, DOI 10.1007/BF02921431
- Joan Josep Carmona and Julià Cufí, The calculation of the $L^2$-norm of the index of a plane curve and related formulas, J. Anal. Math. 120 (2013), 225–253. MR 3095153, DOI 10.1007/s11854-013-0019-9
- Paul J. Cohen, On Green’s theorem, Proc. Amer. Math. Soc. 10 (1959), 109–112. MR 104249, DOI 10.1090/S0002-9939-1959-0104249-3
- Robert M. Fesq, Green’s formula, linear continuity, and Hausdorff measure, Trans. Amer. Math. Soc. 118 (1965), 105–112. MR 174696, DOI 10.1090/S0002-9947-1965-0174696-X
- Theodore W. Gamelin, Uniform algebras, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1969. MR 0410387
- J. H. Michael, An approximation to a rectifiable plane curve, J. London Math. Soc. 30 (1955), 1–11. MR 66445, DOI 10.1112/jlms/s1-30.1.1
- I. P. Natanson, Theory of Functions of a real variable, Vol. 1, Frederich Ungar Publ., New York, 1961.
- Georg Nöbeling, Eine allgemeine Fassung des Hauptsatzes der Funktionentheorie von Cauchy, Math. Ann. 121 (1949), 54–66 (German). MR 29976, DOI 10.1007/BF01329616
- Joan Verdera, Removability, capacity and approximation, Complex potential theory (Montreal, PQ, 1993) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 439, Kluwer Acad. Publ., Dordrecht, 1994, pp. 419–473. MR 1332967
- A. G. Vituškin, Analytic capacity of sets in problems of approximation theory, Uspehi Mat. Nauk 22 (1967), no. 6 (138), 141–199 (Russian). MR 0229838
Bibliographic Information
- Julià Cufí
- Affiliation: Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia
- Email: jcufi@mat.uab.cat
- Joan Verdera
- Affiliation: Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia
- Email: jvm@mat.uab.cat
- Received by editor(s): June 28, 2013
- Received by editor(s) in revised form: October 21, 2013
- Published electronically: December 4, 2014
- Additional Notes: This work was partially supported by the grants 2009SGR420 (Generalitat de Catalunya) and MTM2010-15657 (Ministerio de Educación y Ciencia)
- Communicated by: Alexander Iosevich
- © Copyright 2014 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 143 (2015), 2091-2102
- MSC (2010): Primary 26B20, 30C99; Secondary 31A10
- DOI: https://doi.org/10.1090/S0002-9939-2014-12418-X
- MathSciNet review: 3314118