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EXTREMAL PROBLEMS FOR EIGENVALUES

OF MEASURE DIFFERENTIAL EQUATIONS

GANG MENG

(Communicated by Yingfei Yi)

Abstract. Measure differential equations can model non-classical problems
like the quantum effects. In this paper we will solve extremal problems for
eigenvalues of measure differential equations by exploiting the approximation
of general measures by smooth measures and the continuity results of eigen-
values in weak∗ topology of measures.

1. Introduction

Problems linking the coefficient of an operator to the sequence of its eigenval-
ues are among the most fascinating of mathematical analysis. One of the reasons
that makes them so attractive is that the solutions are involved in many differ-
ent branches of mathematics. Moreover, they are very simple to state and gen-
erally hard to solve. For both ordinary and partial differential operators, there
have evolved many results [2, 5–7, 10, 12, 19, 22]. In this paper we are interested
in extremal problems for eigenvalues of measure differential equations where some
physically meaningful measurement is assumed to be fixed.

A basic model in applied sciences is the oscillation of a string which can be
described by the second order linear ordinary differential equation

ÿ + q(t)y = 0,

where q ∈ L1(J,R) with J = [a, b] a finite interval. In this case q(t) can be
understood as the density of the string so that the distribution of mass

μq(t) :=

∫
[a,t]

q(s) ds, t ∈ J,

is absolutely continuous (with respect to the Lebesgue measure � of J), while the
L1 norm ‖q‖1,J := ‖q‖L1(J) can be understood as the “total mass” of the string.
Physically, masses of strings may not be absolutely continuously distributed. For
example, the Dirac distributions of mass located at one point are even completely
singular with respect to the Lebesgue measure. In order to describe the oscillation
of these strings, one must extend the theory for ordinary differential equations to
measure differential equations, also called generalized ordinary differential equations
in some references. Measure differential equations enable us to treat in a unified
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way both continuous and discrete systems and have been extensively studied by
many authors; see [4, 9, 15–18].

Let I = [0, 1]. For a function μ : I → R, the total variation of μ (over I) is
defined as

V(μ, I) := sup

{
n−1∑
i=0

|μ(ti+1)− μ(ti)| : 0 = t0 < t1 < · · · < tn−1 < tn = 1, n ∈ N

}
.

Let

M(I,R) := {μ : I → R : μ(0+) ∃, μ(t+) = μ(t) ∀t ∈ (0, 1), V(μ, I) < ∞}
be the space of non-normalized R-valued measures of I. Here, for any t ∈ [0, 1),
μ(t+) := lims↓t μ(s) is the right-limit. The space of (normalized) R-valued measures
is

(1.1) M0(I,R) := {μ ∈ M(I,R) : μ(0+) = 0} .
For simplicity, we write V(μ, I) as ‖μ‖V. By the Riesz representation theorem [11],
(M0(I,R), ‖·‖V) is the same as the dual space of the Banach space (C(I,R), ‖·‖∞)
of continuous R-valued functions of I. In fact, μ ∈ (M0(I,R), ‖ · ‖V) defines
μ∗ ∈ (C(I,R), ‖ · ‖∞)∗ by

(1.2) μ∗(f) =

∫
I

f(t) dμ(t), f ∈ C(I,R),

which refers to the Riemann-Stieltjes integral (or Lebesgue-Stieltjes integral). More-
over, one has

‖μ‖V = V(μ, I) = sup
{∫

I
f dμ : f ∈ C(I,R), ‖f‖∞ = 1

}
.

For the general theory of the Riemann-Stieltjes integral and the Lebesgue-Stieltjes
integral, see, e.g., [1].

Very recently, the authors have established in [14] some basic theory for eigen-
values of the second order linear measure differential equations

(1.3) d
•
y+λy dt+ y dμ(t) = 0, t ∈ I.

The Dirichlet boundary condition is

(1.4) y(0) = y(1) = 0,

while the Neumann boundary condition is

(1.5)
•
y(0) =

•
y(1) = 0.

Definition 1.1. By a solution y(t) to the boundary value problem (1.3), we mean
that

• y ∈ C(I,R) fulfills the boundary condition (1.4) or (1.5),
• there exists a function z : I → R such that the equations (containing the

Lebesgue-Stieltjes integral)

y(t) = y0 +

∫
[0,t]

z(s) ds, t ∈ [0, 1],

z(t) =

{
z0, t = 0,
z0 −

∫
[0,t]

y(s) dμ(s), t ∈ (0, 1],

are satisfied and then
•
y(t) := z(t). Here (y0, z0) ∈ R

2.
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Definition 1.2. Given μ ∈ M0(I,R), we say that λ ∈ C is an eigenvalue of the
Dirichlet problem (1.3)-(1.4), if equation (1.3) with such a parameter λ has non-zero
solutions y(t) satisfying (1.4). The corresponding solutions y(t) are called eigen-
functions associated with λ. The eigenvalues and eigenfunctions for the Neumann
problem (1.3)-(1.5) are defined similarly.

Let us recall some known facts about eigenvalue theory of the second order
measure differential equations ([14]).

(f1) Problem (1.3)-(1.4) has a sequence of real (simple) eigenvalues λD
m(μ), m ∈

N, increasing in m ∈ N.
(f2) Problem (1.3)-(1.5) has a sequence of real (simple) eigenvalues λN

m(μ), m ∈
Z
+, increasing in m ∈ Z

+. Here Z
+ := {0} ∪ N.

(f3) Moreover, limm→∞ λD
m(μ) = limm→∞ λN

m(μ) = +∞.
For r ∈ (0,∞), denote

(1.6) B0[r] := {μ ∈ M0(I,R) : ‖μ‖V ≤ r} .
In this paper we will study the following minimization and maximization problems:

(1.7) Lm(r) := inf
q∈B0[r]

λσ
m(q) and Mm(r) := sup

q∈B0[r]

λσ
m(q).

Here m ∈ N for σ = D or m ∈ Z+ for σ = N . Due to the relation between the
Dirichlet and Neumann eigenvalues, for m ∈ N, both the Dirichlet and Neumann
eigenvalues will result in the same infimum and supremum.

The main results of this paper are as follows.

Theorem 1.3. Define

Ẑ(x) =
√
−x tanh

√
−x for x ∈ (−∞, 0],(1.8)

Z(x) =

⎧⎨
⎩

2
√
−x coth(

√
−x/2) for x ∈ (−∞, 0),

4 for x = 0,
2
√
x cot(

√
x/2) for x ∈ (0, π2],

(1.9)

Y(x) =
(
π +

√
π2 + 4x

)2

/4 for x ∈ [0,∞).(1.10)

Then Ẑ : (−∞, 0] → [0,∞), Z : (−∞, π2] → [0,∞), Y : [0,∞) → [π2,∞) and

L0(r) = Ẑ−1(r),(1.11)

M0(r) = r,(1.12)

Lm(r) = m2Z−1(r/m2) for m ∈ N,(1.13)

Mm(r) = m2Y(r/m2) for m ∈ N,(1.14)

hold for each r > 0.

The physical explanation to Theorem 1.3 is as follows. If a string has the total
mass r > 0, then the m-th Dirichlet/Neumann frequency can change in the interval
[Lm(r),Mm(r)], regardless of the distribution of its mass.

This paper is organized as follows. In Section 2, after recalling some basic facts
on measures and topologies, we will prove a simplified version of the Alexandroff
Theorem for the weak∗ convergence in the one-dimensional case. Then, we will ob-
tain the approximation of general measures by smooth measures in weak∗ topology.
In Section 3, we will use the approximation of general measures and the continu-
ity results of eigenvalues to solve extremal problems for eigenvalues of measure
differential equations.
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2. Auxiliary lemmas

For the convenience of the reader, we present here some necessary basic facts to
be used in this paper.

Let I = [0, 1]. For any subinterval I0 ⊂ I, closed, open or semi-open, the total
variation of μ over I0 is also well defined. For example, if I0 = (a, b] ⊂ I, the total
variation is

V(μ, I0) := sup

{
n−1∑
i=0

|μ(ti+1)− μ(ti)| : a < t0 < t1 < · · · < tn−1 < tn=b, n∈N

}
.

Recall the space M0(I,R) is as in (1.1). Note that the normalization condition for
μ ∈ M0(I,R) is μ(0+) = 0. Hence μ(0) �= 0 is possible. Due to the right-continuity
of μ ∈ M0(I,R) on (0, 1), one has the following result for variations:

(2.1) lim
t↓t0

V(μ, [t0, t]) = lim
t↓t0

V(μ, (t0, t]) = 0, t0 ∈ (0, 1).

Given μ ∈ M0(I,R) and f ∈ C(I,R), for any subinterval I0 ⊂ I, closed, open or
semi-open, the Lebesgue-Stieltjes integral

∫
I0
f dμ is also defined. Due to the jump

of a measure μ(t) at t = 0, one has

(2.2)

∫
[0,b]

f dμ = −f(0)μ(0) +

∫
(0,b]

f dμ, b ∈ (0, 1].

That is,
∫
[0,b]

f dμ and
∫
(0,b]

f dμ may differ. If I0 has the form (a, b), (a, b], where

0 ≤ a < b ≤ 1, or the form [0, b), [0, b], where 0 < b ≤ 1, one has the following basic
inequality:

(2.3)

∣∣∣∣
∫
I0

f dμ

∣∣∣∣ ≤ ‖f‖∞,I0 ·V(f, I0), ‖f‖∞,I0 := sup
t∈I0

|f(t)|.

We say that measures μ2 ≥ μ1 hold for measures μ1, μ2 if∫
I

f(t) dμ2(t) ≥
∫
I

f(t) dμ1(t) for all f ∈ C+ := {f ∈ C(I,R) : f(t) ≥ 0, t ∈ I} .

In fact, if μ2 ≥ μ1, then μ2 − μ1 is nondeceasing on I.
In the space M0(I,R) of measures, one has the usual topology induced by the

norm ‖ · ‖V. It holds that (M0(I,R), ‖ · ‖V) is a Banach space. Due to the duality
relation (1.2), one has the following weak∗ topology w∗.

Definition 2.1. Let μ0, μn ∈ M0(I,R), n ∈ N. We say that μn is weakly∗

convergent to μ0 if, for each f ∈ C(I,R), one has

lim
n→∞

∫
I

f(t) dμn(t) =

∫
I

f(t) dμ0(t).

We remark that in some literature, this topology is just called the weak topol-
ogy for measures. For general theory on weak topologies and weak∗ topologies,
we refer to [3, 11]. By the Banach-Alaoglu Theorem [11, pp. 229-230], we have
the following simple characterization on relatively sequentially compact subsets of
(M0(I,R), w

∗).

Lemma 2.2. A subset V ⊂ (M0(I,R), w
∗) is relatively sequentially compact

iff V is bounded in the ‖ · ‖V norm. That is, any sequence {μn} ⊂ M0(I,R)
with supn ‖μn‖V < ∞ has a subsequence converging to some μ0 in the space
(M0(I,R), w

∗).
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Let us recall the Alexandroff Theorem [3, p. 316] for weak∗ convergence.

Lemma 2.3. Let μn, μ0 ∈ M0(I,R). Suppose that
• {‖μn‖V}n∈N is bounded, and
• for any open subset B ⊂ I satisfying μ0(B) = μ0(B̄), one has μn(B) → μ0(B).

Then one has μn → μ0 in (M0(I,R), w
∗).

The following is a simplified version of the Alexandroff Theorem in the one-
dimensional case.

Lemma 2.4. Let μn, μ0 ∈ M0(I,R). Suppose that
• {‖μn‖V}n∈N is bounded, and
• there holds

(2.4) lim
n→∞

(μn(t)− μn(0)) = μ0(t)− μ0(0) ∀t ∈ Sμ0
,

where

Sμ0
:= {s ∈ (0, 1] : either s = 1 or s ∈ (0, 1) so that μ0(t) is continuous at s} .

Then μn → μ0 in (M0(I,R), w
∗).

Proof. Let f ∈ C(I,R) be given. For each ε > 0, there exists δ > 0 such that

t, s ∈ [0, 1], |t− s| < δ =⇒ |f(t)− f(s)| < ε.

It is well known that each measure on I admits at most a countable set of dis-
continuity points. Hence we are able to choose 0 = t0 < t1 < · · · < tk = 1 such
that

|ti+1 − ti| < δ, i = 0, · · · , k − 1,

and all μn(t), n ∈ Z
+, are continuous at ti, i = 1, · · · , k − 1, i.e.,

t1, t2, · · · , tk ∈
⋂

n∈Z+

Sμn
.

Here Z+ := {0} ∪ N. Define the step function

fε(t) :=

k−2∑
i=0

f(ti) · χ[ti,ti+1)(t) + f(tk−1) · χ[tk−1,tk](t), t ∈ I,

where χA is the characteristic function of set A. Then one has

‖fε − f‖∞ < ε.

As μn(t) is continuous at t = t1, t2, · · · , tk−1, one has

μn([ti, ti+1)) = μn(ti+1)− μn(ti) for i = 0, · · · , k − 2,

μn([tk−1, tk]) = μn(tk)− μn(tk−1),

where n ∈ Z
+. Thus,∫

I

fε(t) dμn(t) =

k−2∑
i=0

∫
[ti,ti+1)

fε(t) dμn(t) +

∫
[tk−1,tk]

fε(t) dμn(t)

=
k−2∑
i=0

f(ti)(μn(ti+1)− μn(ti)) + f(tk−1)(μn(tk)− μn(tk−1)).
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Note that

μn(ti+1)− μn(ti) ≡ (μn(ti+1)− μn(0))− (μn(ti)− μn(0)),

where t1, t2, · · · , tk ∈ Sμ0
. It follows from assumption (2.4) that

lim
n→∞

∫
I

fε(t) dμn(t) =
k−2∑
i=0

f(ti)(μ0(ti+1)− μ0(ti)) + f(tk−1)(μ0(tk)− μ0(tk−1))

=

∫
I

fε(t) dμ0(t).(2.5)

Let K > 0 be such that ‖μn‖V ≤ K for all n ∈ Z
+. Then∣∣∣∣

∫
I

f(t) dμn(t)−
∫
I

f(t) dμ0(t)

∣∣∣∣
≤

∣∣∣∣
∫
I

(f(t)− fε(t)) d(μn(t)− μ0(t))

∣∣∣∣+
∣∣∣∣
∫
I

fε(t) d(μn(t)− μ0(t))

∣∣∣∣
≤ 2Kε+

∣∣∣∣
∫
I

fε(t) d(μn(t)− μ0(t))

∣∣∣∣ .
Since ε is arbitrary, by using (2.5), we obtain

lim
n→∞

∫
I

f(t) dμn(t) =

∫
I

f(t) dμ0(t).

Therefore μn → μ0 in (M0(I,R), w
∗). �

In this section, we will consider the approximation of general measures by smooth
measures on I. We first need the following lemma.

Lemma 2.5. Given μ0 ∈ M0(I,R), there exists a sequence of measures {νn} ⊂
C∞(I,R) such that

νn(0) = μ0(0), νn(1) = μ0(1)

and

lim
n→∞

νn(t) = μ0(t) for each point t ∈ (0, 1) at which μ0(·) is continuous.

Proof. Let

(2.6) β(t) :=

{
e

1
|t|2−1 for |t| < 1,

0 for |t| ≥ 1,

and

α(t) :=
β(t)∫

R
β(s) ds

, t ∈ R.

For n ∈ N, define αn(t) = nα(nt). So αn(t) = 0 when |t| ≥ 1/n and
∫
R
αn(s) ds = 1.

Let

(2.7) μ̃(t) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 for t < −1,
2μ0(0)− μ0(−t) for t ∈ [−1, 0),
μ0(t) for t ∈ [0, 1],
2μ0(1)− μ0(2− t) for t ∈ (1, 2],
0 for t > 2.
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Let us take

(2.8) νn(t) :=

∫
R

μ̃(t− s)αn(s) ds =

∫
R

μ̃(s)αn(t− s) ds, t ∈ [0, 1], n ∈ N.

Then νn(t) is C∞(I,R) since αn(t) is C∞(R,R). Moreover, we have the following
conditions:

(i) At t = 0,

νn(0) =

∫
R

μ̃(−s)αn(s) ds

=

∫
R

(μ̃(−s)− μ0(0))αn(s) ds+

∫
R

μ0(0)αn(s) ds

=

∫
[−1/n,1/n]

(μ̃(−s)− μ0(0))αn(s) ds+

∫
R

μ0(0)αn(s) ds

= μ0(0),

since μ̃(t)−μ0(0) = −(μ̃(−t)−μ0(0)), αn(t) = αn(−t) for t ∈ [−1, 1] and
∫
R
αn(s) ds

= 1.
(ii) At t = 1,

νn(1) =

∫
R

μ̃(1− s)αn(s) ds

=

∫
R

(μ̃(1− s)− μ0(1))αn(s) ds+

∫
R

μ0(1)αn(s) ds

=

∫
[−1/n,1/n]

(μ̃(1− s)− μ0(1))αn(s) ds+

∫
R

μ0(1)αn(s) ds

= μ0(1),

since μ̃(1− t)− μ0(1) = −(μ̃(1 + t)− μ0(1)) for t ∈ [−1, 1].
(iii) When t ∈ (0, 1) and μ0 is continuous at t,

|νn(t)− μ0(t)| =
∣∣∣∣
∫
R

(μ̃(t− s)− μ0(t))αn(s) ds

∣∣∣∣
≤ sup

l∈[−1/n,1/n]

|μ̃(t− l)− μ0(t)|
∫
[−1/n,1/n]

αn(s) ds

→ 0,

as n → ∞ since μ0 is continuous at t ∈ (0, 1). �

Next, we will show that in general, a measure cannot be the limit point of smooth
measures in the norm ‖ · ‖V. However, in the w∗ topology, the following conclusion
holds.

Lemma 2.6. Given μ0 ∈ M0(I,R), there exists a sequence of measures {μn} ⊂
C∞(I,R) ∩M0(I,R) such that

μn → μ0 in (M0(I,R), w
∗).

Moreover, if μ0 is increasing (decreasing) on I, then the sequence {μn} above can be
chosen such that for n ∈ N, μn is increasing (decreasing) on I and ‖μn‖V = ‖μ0‖V.

Proof. Take

(2.9) μn(t) := νn(t)− μ0(0), t ∈ [0, 1], n ∈ N,
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where νn(t) is as in (2.8). Then μn(t) is C
∞(I,R) since νn(t) is C

∞(I,R).Moreover,
we have

μn(0+) = μn(0) = νn(0)− μ0(0) = 0.

So μn ∈ M0(I,R), n ∈ N.
We claim that the condition (2.4) in Lemma 2.4 holds. In fact, by Lemma 2.5,

the following conditions hold:
(i) When t = 1,

(2.10) μn(1)− μn(0) = νn(1)− μ0(0)− (νn(0)− μ0(0)) = μ0(1)− μ0(0).

(ii) When t ∈ (0, 1) and μ0 is continuous at t,

|(μn(t)− μn(0))− (μ0(t)− μ0(0))| = |(νn(t)− νn(0))− (μ0(t)− μ0(0))|
= |νn(t)− μ0(t)| → 0,

as n → ∞.
Next, we prove that the first condition in Lemma 2.4 also holds.
Since μ̃(t) has bounded total variation on [−1, 2], we can assume μ̃(t) =

f(t)− g(t), where f and g are increasing on [−1, 2]. Hence for t ∈ [0, 1],

μn(t) = νn(t)− μ0(0) =

∫
R

f(t− s)αn(s) ds−
∫
R

g(t− s)αn(s) ds− μ0(0)

=: Fn(t)−Gn(t)− μ0(0),

where Fn(t) and Gn(t) are increasing on [0, 1]. Therefore

‖μn‖V ≤ ‖Fn‖V + ‖Gn‖V
= Fn(1)− Fn(0) +Gn(1)−Gn(0)

=

∫
R

(f(1− s)− f(−s))αn(s) ds+

∫
R

(g(1− s)− g(−s))αn(s) ds

≤
∫
[−1/n,1/n]

(|f(1− s)|+ |f(−s)|+ |g(1− s)|+ |g(−s)|)αn(s) ds

≤ 2(‖f‖∞,[−1,2] + ‖g‖∞,[−1,2])

∫
[1/n,1/n]

αn(s) ds = const.

By Lemma 2.4, we conclude that

μn → μ0 in (M0(I,R), w
∗).

Moreover, if μ0 is increasing (decreasing) on [0, 1], then μ̃(t) is increasing (de-
creasing) on [−1, 2], which implies μn is also increasing (decreasing) on [0,1]. Hence
by (2.10),

‖μn‖V = |μn(1)− μn(0)| = |μ0(1)− μ0(0)| = ‖μ0‖V.

�

Remark 2.7. The result above shows that the subset C∞(I,R)∩M0(I,R) is dense
in M0(I,R) with the weak∗ topology. However, we have that the subset C∞(I,R)∩
M0(I,R) is not dense in M0(I,R) with the ‖ · ‖V topology since

C∞(I,R) ∩M0(I,R) ⊂ C(I,R),
where the closure is taken in (M0(I,R), ‖ · ‖V).
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Definition 2.8. For μ(t) ∈ M0(I,R), we say μ(t) has density if μ(t) is absolutely
continuous with respect to the Lebesgue measure, i.e., there exists q(t) ∈ L1(I,R)
such that

dμ(t)

dt
= q(t) a.e. t ∈ I.

q(t) is called the density of the measure μ(t).

The following conclusion is an immediate consequence of Lemma 2.6.

Lemma 2.9. Let

E = {ν(t) ∈ M0(I,R) : ν(t) has density}.
Then E is a dense subset in (M0(I,R), w

∗). In other words, for each μ(t) ∈
M0(I,R), there exists a sequence {qn(t)} ⊂ L1(I,R) such that

lim
n→∞

∫
I

f(t)qn(t) dt =

∫
I

f(t) dμ(t) ∀f ∈ C(I,R).

3. Main results

In this section, we consider the eigenvalue problem (1.7). First, we will give some
preliminary results on eigenvalues of the equation (1.3).

Theorem 3.1 ([14]). Let m ∈ N for σ = D or m ∈ Z+ for σ = N . Then
(i) If μ2 ≥ μ1, one has λσ

m(μ2) ≤ λσ
m(μ1).

(ii) In the weak∗ topology of measures, λσ
m(μ) is continuous in μ∈(M0(I,R), w

∗).

When the measure μ ∈ M0(I,R) is absolutely continuous with the density q(t) =
dμ(t)
dt ∈ L1(I,R), (1.3) reduces to a classical Sturm-Liouville problem as follows:

(3.1) ÿ + (λ+ q(t))y = 0, t ∈ I.

In this case, we have λσ
m(q) = λσ

m(μ).
In recent works [19, 20], the authors have successfully solved several minimiza-

tion and maximization problems concerning the eigenvalues of equation (3.1). For
r ∈ (0,∞), let

B1[r] :=
{
q ∈ L1(I,R) : ‖q‖1 ≤ r

}
be the L1 ball. Consider the following minimization and maximization problems:

L̃m(r) := inf
q∈B1[r]

λσ
m(q) and M̃m(r) := sup

q∈B1[r]

λσ
m(q).

Due to the relation between the Dirichlet and Neumann eigenvalues [19], for m ∈ N,
both the Dirichlet and Neumann eigenvalues will result in the same infimum and
supremum. The results in [19, 20] are as follows.

Theorem 3.2 ([19, 20]). We have

L̃0(r) = Ẑ−1(r),(3.2)

M̃0(r) = r,(3.3)

L̃m(r) = m2Z−1(r/m2) for m ∈ N,(3.4)

M̃m(r) = m2Y(r/m2) for m ∈ N.(3.5)

Here functions Ẑ,Z and Y are as in (1.8), (1.9) and (1.10), respectively.
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Note that B1[r] has no compactness. To obtain these results, the authors have
first solved the approximating minimization and maximization problem for eigen-
values on the corresponding Lp balls, 1 < p < ∞. Then one can obtain results in
Theorem 3.2 by letting p ↓ 1.

As a consequence of continuity results in Theorem 3.1, the extremal values (1.7)

Lm(r) = min
μ∈B0[r]

λσ
m(μ) and Mm(r) = max

μ∈B0[r]
λσ
m(μ)

are finite and can be attained by some measures in B0[r], because B0[r] is sequen-
tially compact in (M0(I,R), w

∗) ([3]).
Now we are ready to prove the main theorem of this paper.

Proof of Theorem 1.3. First, we will prove that

Lm(r) = L̃m(r) and Mm(r) = M̃m(r)

for all m ∈ Z+.
Given q(t) ∈ B1[r], the measure μq(t) ∈ M0(I,R) is defined by

μq(t) :=

∫
[0,t]

q(s) ds.

We have ‖μq‖V = ‖q‖1 and then μq ∈ B0[r] is absolutely continuous with respect
to the Lebesgue measure.

So for any q ∈ B1[r],

Lm(r) ≤ λσ
m(μq) = λσ

m(q),

which implies that

(3.6) Lm(r) ≤ L̃m(r).

On the other hand, for each m, there exists μ̄ ∈ B0[r] such that λσ
m(μ̄) = Lm(r).

From basic properties for eigenvalues like the monotonicity of λσ
m(μ) in μ ([14]), we

have μ̄ is increasing. By Lemma 2.6, there exists a sequence of measures {μ̄n} ⊂
C∞(I,R) ∩M0(I,R) with

dμ̄n(t)
dt = q̄n(t) such that

‖μ̄n‖V = ‖q̄n‖1 = ‖μ̄‖V ≤ r

and
μ̄n → μ̄ in (M0(I,R), w

∗).

Therefore, by Theorem 3.1, we have

(3.7) Lm(r) = λσ
m(μ̄) = lim

n→∞
λσ
m(μ̄n) = lim

n→∞
λσ
m(q̄n) ≥ lim

n→∞
L̃m(r) = L̃m(r).

(3.6) and (3.7) imply that Lm(r) = L̃m(r).
We can argue in a similar way to prove the maximization problem.
Hence, by Theorem 3.2, the proof is complete. �

Remark 3.3. In [21], Zhang has studied the minimization problem L0(r) as in (1.7)
of the zeroth Neumann eigenvalues. Notice that the boundary ∂B0[r] is non-smooth
in the Banach space (M0(I,R), ‖ ·‖V). By using the Lagrangian multiplier method
for non-smooth functionals, Zhang has proved in [21] that

(3.8) L0(r) = Ẑ−1(r).

The results in Theorem 1.3 cover the main results in [21]. However, the methods in
this paper are totally different from those in [21]. In fact, we use some known facts
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on extremal eigenvalues of ODE and a new approximation result in this paper to
give a simple method for extremal eigenvalues of measure differential equations.
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