Brannan’s conjecture and trigonometric sums
HTML articles powered by AMS MathViewer
- by Roger W. Barnard, Udaya C. Jayatilake and Alexander Yu. Solynin
- Proc. Amer. Math. Soc. 143 (2015), 2117-2128
- DOI: https://doi.org/10.1090/S0002-9939-2015-12398-2
- Published electronically: January 22, 2015
- PDF | Request permission
Abstract:
We prove some versions of Brannan’s Conjecture on Taylor coefficients of the ratio of two binomials of the form $(1+zx)^\alpha /(1-x)^\beta$ and discuss some related inequalities for trigonometric sums.References
- D. Aharonov and S. Friedland, On an inequality connected with the coefficient conjecture for functions of bounded boundary rotation, Ann. Acad. Sci. Fenn. Ser. A. I. 524 (1972), 14. MR 322155
- Roger W. Barnard, Open problems and conjectures in complex analysis, Computational methods and function theory (Valparaíso, 1989) Lecture Notes in Math., vol. 1435, Springer, Berlin, 1990, pp. 1–26. MR 1071758, DOI 10.1007/BFb0087893
- Roger W. Barnard, Kent Pearce, and William Wheeler, On a coefficient conjecture of Brannan, Complex Variables Theory Appl. 33 (1997), no. 1-4, 51–61. MR 1624894, DOI 10.1080/17476939708815011
- D. A. Brannan, On coefficient problems for certain power series, Proceedings of the Symposium on Complex Analysis (Univ. Kent, Canterbury, 1973) London Math. Soc. Lecture Note Ser., No. 12, Cambridge Univ. Press, London, 1974, pp. 17–27. MR 0412411
- Udaya C. Jayatilake, Brannan’s conjecture for initial coefficients. Complex Var. Elliptic Equ. 58 (2013), no. 5, 685–694.
- John G. Milcetich, On a coefficient conjecture of Brannan, J. Math. Anal. Appl. 139 (1989), no. 2, 515–522. MR 996975, DOI 10.1016/0022-247X(89)90125-X
- Daniel S. Moak, An application of hypergeometric functions to a problem in function theory, Internat. J. Math. Math. Sci. 7 (1984), no. 3, 503–506. MR 771598, DOI 10.1155/S0161171284000545
- Stephan Ruscheweyh and Luis Salinas, On Brannan’s coefficient conjecture and applications, Glasg. Math. J. 49 (2007), no. 1, 45–52. MR 2337865, DOI 10.1017/S0017089507003400
- L. Vietoris, Über das Vorzeichen gewisser trigonometrischer Summen. III, Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 203 (1994), 57–61 (1995) (German). MR 1335606
- W. H. Young, On a Certain Series of Fourier, Proc. London Math. Soc. (2) 11 (1913), 357–366. MR 1577231, DOI 10.1112/plms/s2-11.1.357
Bibliographic Information
- Roger W. Barnard
- Affiliation: Department of Mathematics and Statistics, Texas Tech University, Lubbock, Texas 79409
- MR Author ID: 31355
- Email: roger.w.barnard@ttu.edu
- Udaya C. Jayatilake
- Affiliation: Department of Mathematics and Statistics, Texas Tech University, Box 41042, Lubbock, Texas 79409
- Address at time of publication: Department of Mathematics, Faculty of Engineering, University of Moratuwa, Katubedda, Moratuwa, Sri Lanka
- Email: ucjaya@uom.lk
- Alexander Yu. Solynin
- Affiliation: Department of Mathematics and Statistics, Texas Tech University, Box 41042, Lubbock, Texas 79409
- MR Author ID: 206458
- Email: alex.solynin@ttu.edu
- Received by editor(s): July 19, 2013
- Received by editor(s) in revised form: November 3, 2013
- Published electronically: January 22, 2015
- Additional Notes: The research of the third author was partially supported by NSF grant DMS-1001882
- Communicated by: Jeremy T. Tyson
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 143 (2015), 2117-2128
- MSC (2010): Primary 30C10, 30C50
- DOI: https://doi.org/10.1090/S0002-9939-2015-12398-2
- MathSciNet review: 3314120