A maximum principle for Hermitian (and other) metrics
HTML articles powered by AMS MathViewer
- by László Lempert
- Proc. Amer. Math. Soc. 143 (2015), 2193-2200
- DOI: https://doi.org/10.1090/S0002-9939-2015-12472-0
- Published electronically: January 21, 2015
- PDF | Request permission
Abstract:
We consider homomorphisms of hermitian holomorphic Hilbert bundles. Assuming the homomorphism decreases curvature, we prove that its pointwise norm is plurisubharmonic.References
- Lars V. Ahlfors, An extension of Schwarz’s lemma, Trans. Amer. Math. Soc. 43 (1938), no. 3, 359–364. MR 1501949, DOI 10.1090/S0002-9947-1938-1501949-6
- Robert Berman and Julien Keller, Bergman geodesics, Complex Monge-Ampère equations and geodesics in the space of Kähler metrics, Lecture Notes in Math., vol. 2038, Springer, Heidelberg, 2012, pp. 283–302. MR 2932447, DOI 10.1007/978-3-642-23669-3_{8}
- Bo Berndtsson, Curvature of vector bundles associated to holomorphic fibrations, Ann. of Math. (2) 169 (2009), no. 2, 531–560. MR 2480611, DOI 10.4007/annals.2009.169.531
- B. Berndtsson, The openness conjecture for plurisubharmonic functions, arxiv: 1305.5781.
- R. R. Coifman and S. Semmes, Interpolation of Banach spaces, Perron processes, and Yang-Mills, Amer. J. Math. 115 (1993), no. 2, 243–278. MR 1216432, DOI 10.2307/2374859
- Jean-Pierre Demailly and János Kollár, Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds, Ann. Sci. École Norm. Sup. (4) 34 (2001), no. 4, 525–556 (English, with English and French summaries). MR 1852009, DOI 10.1016/S0012-9593(01)01069-2
- Q. Guan, X. Zhou, Strong openness conjecture for plurisubharmonic functions, arxiv:1311.3781.
- Shoshichi Kobayashi, Negative vector bundles and complex Finsler structures, Nagoya Math. J. 57 (1975), 153–166. MR 377126, DOI 10.1017/S0027763000016615
- J. E. Littlewood, On the definition of a subharmonic function, J. London Math. Soc. 2 (1927), 189–192.
- László Lempert and Róbert Szőke, Direct images, fields of Hilbert spaces, and geometric quantization, Comm. Math. Phys. 327 (2014), no. 1, 49–99. MR 3177932, DOI 10.1007/s00220-014-1899-y
- Vakhid Masagutov, Homomorphisms of infinitely generated analytic sheaves, Ark. Mat. 49 (2011), no. 1, 129–148. MR 2784261, DOI 10.1007/s11512-010-0129-x
- H. L. Royden, The Ahlfors-Schwarz lemma in several complex variables, Comment. Math. Helv. 55 (1980), no. 4, 547–558. MR 604712, DOI 10.1007/BF02566705
- S. Saks, On subharmonic functions, Acta Litt. Sci. Szeged 5 (1932) 187–193.
- Shing Tung Yau, A general Schwarz lemma for Kähler manifolds, Amer. J. Math. 100 (1978), no. 1, 197–203. MR 486659, DOI 10.2307/2373880
Bibliographic Information
- László Lempert
- Affiliation: Department of Mathematics, Purdue University, West Lafayette, Indiana 47907-2067
- MR Author ID: 112435
- Received by editor(s): September 11, 2013
- Received by editor(s) in revised form: December 13, 2013
- Published electronically: January 21, 2015
- Additional Notes: The authors research was partially supported by NSF grant DMS-1162070
- Communicated by: Mei-Chi Shaw
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 143 (2015), 2193-2200
- MSC (2010): Primary 32L10, 32Q99, 32U05
- DOI: https://doi.org/10.1090/S0002-9939-2015-12472-0
- MathSciNet review: 3314125