Vertex barycenter of generalized associahedra
Authors:
Vincent Pilaud and Christian Stump
Journal:
Proc. Amer. Math. Soc. 143 (2015), 2623-2636
MSC (2010):
Primary 52B15; Secondary 13F60, 52B05
DOI:
https://doi.org/10.1090/S0002-9939-2015-12357-X
Published electronically:
February 11, 2015
MathSciNet review:
3326042
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We show that the vertex barycenter of generalized associahedra and permutahedra coincide for any finite Coxeter system.
- Frédéric Chapoton, Sergey Fomin, and Andrei Zelevinsky, Polytopal realizations of generalized associahedra, Canad. Math. Bull. 45 (2002), no. 4, 537–566. Dedicated to Robert V. Moody. MR 1941227, DOI https://doi.org/10.4153/CMB-2002-054-1
- Cesar Ceballos, Jean-Philippe Labbé, and Christian Stump, Subword complexes, cluster complexes, and generalized multi-associahedra, J. Algebraic Combin. 39 (2014), no. 1, 17–51. MR 3144391, DOI https://doi.org/10.1007/s10801-013-0437-x
- Sergey Fomin and Andrei Zelevinsky, Cluster algebras. II. Finite type classification, Invent. Math. 154 (2003), no. 1, 63–121. MR 2004457, DOI https://doi.org/10.1007/s00222-003-0302-y
- Sergey Fomin and Andrei Zelevinsky, $Y$-systems and generalized associahedra, Ann. of Math. (2) 158 (2003), no. 3, 977–1018. MR 2031858, DOI https://doi.org/10.4007/annals.2003.158.977
- Christophe Hohlweg and Carsten E. M. C. Lange, Realizations of the associahedron and cyclohedron, Discrete Comput. Geom. 37 (2007), no. 4, 517–543. MR 2321739, DOI https://doi.org/10.1007/s00454-007-1319-6
- Christophe Hohlweg, Jonathan Lortie, and Annie Raymond, The centers of gravity of the associahedron and of the permutahedron are the same, Electron. J. Combin. 17 (2010), no. 1, Research Paper 72, 14. MR 2651725
- Christophe Hohlweg, Carsten E. M. C. Lange, and Hugh Thomas, Permutahedra and generalized associahedra, Adv. Math. 226 (2011), no. 1, 608–640. MR 2735770, DOI https://doi.org/10.1016/j.aim.2010.07.005
- Christophe Hohlweg, Permutahedra and associahedra: generalized associahedra from the geometry of finite reflection groups, Associahedra, Tamari lattices and related structures, Prog. Math. Phys., vol. 299, Birkhäuser/Springer, Basel, 2012, pp. 129–159. MR 3221538, DOI https://doi.org/10.1007/978-3-0348-0405-9_8
- James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, vol. 9, Springer-Verlag, New York-Berlin, 1978. Second printing, revised. MR 499562
- James E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990. MR 1066460
- Allen Knutson and Ezra Miller, Subword complexes in Coxeter groups, Adv. Math. 184 (2004), no. 1, 161–176. MR 2047852, DOI https://doi.org/10.1016/S0001-8708%2803%2900142-7
- Jean-Louis Loday, Realization of the Stasheff polytope, Arch. Math. (Basel) 83 (2004), no. 3, 267–278. MR 2108555, DOI https://doi.org/10.1007/s00013-004-1026-y
- Vincent Pilaud and Michel Pocchiola, Multitriangulations, pseudotriangulations and primitive sorting networks, Discrete Comput. Geom. 48 (2012), no. 1, 142–191. MR 2917206, DOI https://doi.org/10.1007/s00454-012-9408-6
- Vincent Pilaud and Christian Stump, Brick polytopes of spherical subword complexes and generalized associahedra. To appear in Adv. Math. Preprint, arXiv:1111.3349, 2011.
- Vincent Pilaud and Francisco Santos, The brick polytope of a sorting network, European J. Combin. 33 (2012), no. 4, 632–662. MR 2864447, DOI https://doi.org/10.1016/j.ejc.2011.12.003
- Vincent Pilaud and Christian Stump, EL-labelings and canonical spanning trees for subword complexes, Discrete geometry and optimization, Fields Inst. Commun., vol. 69, Springer, New York, 2013, pp. 213–248. MR 3156785, DOI https://doi.org/10.1007/978-3-319-00200-2_13
- Nathan Reading, Cambrian lattices, Adv. Math. 205 (2006), no. 2, 313–353. MR 2258260, DOI https://doi.org/10.1016/j.aim.2005.07.010
- Nathan Reading, Sortable elements and Cambrian lattices, Algebra Universalis 56 (2007), no. 3-4, 411–437. MR 2318219, DOI https://doi.org/10.1007/s00012-007-2009-1
- Nathan Reading and David E. Speyer, Cambrian fans, J. Eur. Math. Soc. (JEMS) 11 (2009), no. 2, 407–447. MR 2486939, DOI https://doi.org/10.4171/JEMS/155
- Salvatore Stella, Polyhedral models for generalized associahedra via Coxeter elements, J. Algebraic Combin. 38 (2013), no. 1, 121–158. MR 3070123, DOI https://doi.org/10.1007/s10801-012-0396-7
- Christian Stump, A new perspective on $k$-triangulations, J. Combin. Theory Ser. A 118 (2011), no. 6, 1794–1800. MR 2793610, DOI https://doi.org/10.1016/j.jcta.2011.03.001
- A. Woo, Catalan numbers and Schubert polynomials for $w=1(n+1)... 2$. Preprint, arXiv:0407160, 2004.
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 52B15, 13F60, 52B05
Retrieve articles in all journals with MSC (2010): 52B15, 13F60, 52B05
Additional Information
Vincent Pilaud
Affiliation:
CNRS and LIX, École Polytechnique, 91128 Palaiseau, France
MR Author ID:
860480
Email:
vincent.pilaud@lix.polytechnique.fr
Christian Stump
Affiliation:
Institut für Algebra, Zahlentheorie, Diskrete Mathematik, Universität Hannover, Hannover, Germany
Address at time of publication:
Diskrete Geometrie, Freie Universität Berlin, Arnimallee 2, 14195 Berlin, Germany
MR Author ID:
904921
ORCID:
0000-0002-9271-8436
Email:
stump@math.uni-hannover.de, christian.stump@fu-berlin.de
Received by editor(s):
October 16, 2012
Received by editor(s) in revised form:
September 9, 2013
Published electronically:
February 11, 2015
Additional Notes:
The first author was supported by the Spanish MICINN grant MTM2011-22792, by the French ANR grant EGOS 12 JS02 002 01, and by the European Research Project ExploreMaps (ERC StG 208471).
Communicated by:
Jim Haglund
Article copyright:
© Copyright 2015
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.