Non-meager free sets for meager relations on Polish spaces
HTML articles powered by AMS MathViewer
- by Taras Banakh and Lyubomyr Zdomskyy
- Proc. Amer. Math. Soc. 143 (2015), 2719-2724
- DOI: https://doi.org/10.1090/S0002-9939-2015-12419-7
- Published electronically: February 16, 2015
- PDF | Request permission
Abstract:
We prove that for each meager relation $E\subset X\times X$ on a Polish space $X$ there is a nowhere meager subspace $F\subset X$ which is $E$-free in the sense that $(x,y)\notin E$ for any distinct points $x,y\in F$.References
- Taras Banakh, Zdzisław Kosztołowicz, and Sławomir Turek, Hereditarily supercompact spaces, Topology Appl. 161 (2014), 263–278. MR 3132367, DOI 10.1016/j.topol.2013.10.028
- Taras Banakh and Lyubomyr Zdomskyy, The coherence of semifilters: a survey, Selection principles and covering properties in topology, Quad. Mat., vol. 18, Dept. Math., Seconda Univ. Napoli, Caserta, 2006, pp. 53–105. MR 2395751
- Tomek Bartoszyński and Haim Judah, Set theory, A K Peters, Ltd., Wellesley, MA, 1995. On the structure of the real line. MR 1350295
- Tomek Bartoszyński, Haim Judah, and Saharon Shelah, The Cichoń diagram, J. Symbolic Logic 58 (1993), no. 2, 401–423. MR 1233917, DOI 10.2307/2275212
- Andreas Blass, Combinatorial cardinal characteristics of the continuum, Handbook of set theory. Vols. 1, 2, 3, Springer, Dordrecht, 2010, pp. 395–489. MR 2768685, DOI 10.1007/978-1-4020-5764-9_{7}
- Stefanie Frick and Stefan Geschke, Basis theorems for continuous $n$-colorings, J. Combin. Theory Ser. A 118 (2011), no. 4, 1334–1349. MR 2755085, DOI 10.1016/j.jcta.2010.12.006
- Stefan Geschke, Weak Borel chromatic numbers, MLQ Math. Log. Q. 57 (2011), no. 1, 5–13. MR 2779703, DOI 10.1002/malq.201010001
- Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995. MR 1321597, DOI 10.1007/978-1-4612-4190-4
- Wiesław Kubiś, Perfect cliques and $G_\delta$ colorings of Polish spaces, Proc. Amer. Math. Soc. 131 (2003), no. 2, 619–623. MR 1933354, DOI 10.1090/S0002-9939-02-06584-X
- Ludomir Newelski, Janusz Pawlikowski, and Witold Seredyński, Infinite free set for small measure set mappings, Proc. Amer. Math. Soc. 100 (1987), no. 2, 335–339. MR 884475, DOI 10.1090/S0002-9939-1987-0884475-3
- Slawomir Solecki and Otmar Spinas, Dominating and unbounded free sets, J. Symbolic Logic 64 (1999), no. 1, 75–80. MR 1683896, DOI 10.2307/2586752
- Robert M. Solovay, A model of set-theory in which every set of reals is Lebesgue measurable, Ann. of Math. (2) 92 (1970), 1–56. MR 265151, DOI 10.2307/1970696
- Michel Talagrand, Filtres: mesurabilité, rapidité, propriété de Baire forte, Studia Math. 74 (1982), no. 3, 283–291 (French). MR 683750, DOI 10.4064/sm-74-3-283-291
Bibliographic Information
- Taras Banakh
- Affiliation: Department of Mathematics, Ivan Franko National University of Lviv, Ukraine – and – Instytut Matematyki, Jan Kochanowski University, Kielce, Poland
- MR Author ID: 249694
- Email: t.o.banakh@gmail.com
- Lyubomyr Zdomskyy
- Affiliation: Kurt Gödel Research Center for Mathematical Logic, University of Vienna, Währinger Straße 25, A-1090 Wien, Austria
- MR Author ID: 742789
- Email: lzdomsky@gmail.com
- Received by editor(s): April 9, 2013
- Received by editor(s) in revised form: October 28, 2013
- Published electronically: February 16, 2015
- Additional Notes: The first author was partially supported by NCN grants DEC-2011/01/B/ST1/01439 and DEC-2012/07/D/ST1/02087
The second author was a recipient of an APART-fellowship of the Austrian Academy of Sciences - Communicated by: Mirna Dz̆amonja
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 143 (2015), 2719-2724
- MSC (2010): Primary 54E52, 54E50; Secondary 54D80
- DOI: https://doi.org/10.1090/S0002-9939-2015-12419-7
- MathSciNet review: 3326049