Flow invariance for differential delay equations
HTML articles powered by AMS MathViewer
- by Naoki Tanaka
- Proc. Amer. Math. Soc. 143 (2015), 2459-2468
- DOI: https://doi.org/10.1090/S0002-9939-2015-12437-9
- Published electronically: January 9, 2015
- PDF | Request permission
Abstract:
The flow invariance problem for the functional differential equation $u’(t)\in Au(t)+F(u_t)$ for $t\geq 0$ with initial condition $u_0=\phi \in \frak {D}$ is solved in a Banach space $X$, where $A$ is a quasi-dissipative operator in $X$ and $F$ is a continuous operator from a closed set $\frak {D}$ in the so-called initial-history space $\frak {X}$ into $X$ satisfying a dissipativity condition in the following sense: There exists $\omega _F\geq 0$ such that $[\phi (0)-\hat {\phi }(0),~F(\phi )-F(\hat {\phi })]_{+}\leq \omega _F\|\phi -\hat {\phi }\|_{\frak {X}}$ for $\phi , \hat {\phi }\in \frak {D}$ satisfying that $\|\phi -\hat {\phi }\|_{\frak {X}}\leq \|\phi (0)-\hat {\phi }(0)\|_X$, where $[x,\xi ]_{+}=\lim _{h\to 0+}(\|x+h\xi \|_X-\|x\|_X)/h$ for $x,\xi \in X$.References
- Ph. Bénilan, Equations d’évolution dans un espace de Banach quelconque et applications, Thèsis, Orsay, 1972.
- Dennis W. Brewer, A nonlinear semigroup for a functional differential equation, Trans. Amer. Math. Soc. 236 (1978), 173–191. MR 466838, DOI 10.1090/S0002-9947-1978-0466838-2
- M. G. Crandall and T. M. Liggett, Generation of semi-groups of nonlinear transformations on general Banach spaces, Amer. J. Math. 93 (1971), 265–298. MR 287357, DOI 10.2307/2373376
- Janet Dyson and Rosanna Villella Bressan, Functional differential equations and non-linear evolution operators, Proc. Roy. Soc. Edinburgh Sect. A 75 (1975/76), no. 3, 223–234. MR 442402, DOI 10.1017/S0308210500017959
- Janet Dyson and Rosanna Villella Bressan, Semigroups of translations associated with functional and functional-differential equations, Proc. Roy. Soc. Edinburgh Sect. A 82 (1978/79), no. 3-4, 171–188. MR 532900, DOI 10.1017/S030821050001115X
- H. Flaschka and M. J. Leitman, On semigroups of nonlinear operators and the solution of the functional differential equation $\dot x(t)=F(x_{t})$, J. Math. Anal. Appl. 49 (1975), 649–658. MR 361959, DOI 10.1016/0022-247X(75)90204-8
- Jack K. Hale, Functional differential equations with infinite delays, J. Math. Anal. Appl. 48 (1974), 276–283. MR 364813, DOI 10.1016/0022-247X(74)90233-9
- F. Kappel and W. Schappacher, Some considerations to the fundamental theory of infinite delay equations, J. Differential Equations 37 (1980), no. 2, 141–183. MR 587220, DOI 10.1016/0022-0396(80)90093-5
- A. G. Kartsatos and M. E. Parrott, Global solutions of functional evolution equations involving locally defined Lipschitzian perturbations, J. London Math. Soc. (2) 27 (1983), no. 2, 306–316. MR 692536, DOI 10.1112/jlms/s2-27.2.306
- Athanassios G. Kartsatos and Mary E. Parrott, The weak solution of a functional-differential equation in a general Banach space, J. Differential Equations 75 (1988), no. 2, 290–302. MR 961157, DOI 10.1016/0022-0396(88)90140-4
- Yoshikazu Kobayashi, Difference approximation of Cauchy problems for quasi-dissipative operators and generation of nonlinear semigroups, J. Math. Soc. Japan 27 (1975), no. 4, 640–665. MR 399974, DOI 10.2969/jmsj/02740640
- Y. Kobayashi, Lectures on Nonlinear Semigroups (in Japanese).
- V. Lakshmikantham, S. Leela, and V. Moauro, Existence and uniqueness of solutions of delay differential equations on a closed subset of a Banach space, Nonlinear Anal. 2 (1978), no. 3, 311–327. MR 512662, DOI 10.1016/0362-546X(78)90020-2
- S. Leela and Vinicio Moauro, Existence of solutions in a closed set for delay differential equations in Banach spaces, Nonlinear Anal. 2 (1978), no. 1, 47–58. MR 512653, DOI 10.1016/0362-546X(78)90040-8
- James H. Lightbourne III, Function space flow invariance for functional-differential equations of retarded type, Proc. Amer. Math. Soc. 77 (1979), no. 1, 91–98. MR 539637, DOI 10.1090/S0002-9939-1979-0539637-7
- Isao Miyadera, Some remarks on semi-groups of nonlinear operators, Tohoku Math. J. (2) 23 (1971), 245–258. MR 296746, DOI 10.2748/tmj/1178242643
- Isao Miyadera, Nonlinear semigroups, Translations of Mathematical Monographs, vol. 109, American Mathematical Society, Providence, RI, 1992. Translated from the 1977 Japanese original by Choong Yun Cho. MR 1192132, DOI 10.1090/mmono/109
- N. Pavel and F. Iacob, Invariant sets for a class of perturbed differential equations of retarded type, Israel J. Math. 28 (1977), no. 3, 254–264. MR 466829, DOI 10.1007/BF02759812
- Michel Pierre, Invariant closed subsets for nonlinear semigroups, Nonlinear Anal. 2 (1978), no. 1, 107–117. MR 512659, DOI 10.1016/0362-546X(78)90046-9
- Andrew T. Plant, Nonlinear semigroups of translations in Banach space generated by functional differential equations, J. Math. Anal. Appl. 60 (1977), no. 1, 67–74. MR 447745, DOI 10.1016/0022-247X(77)90048-8
- Wolfgang M. Ruess, The evolution operator approach to functional-differential equations with delay, Proc. Amer. Math. Soc. 119 (1993), no. 3, 783–791. MR 1154248, DOI 10.1090/S0002-9939-1993-1154248-8
- W. M. Ruess, Existence of solutions to partial functional-differential equations with delay, Theory and applications of nonlinear operators of accretive and monotone type, Lecture Notes in Pure and Appl. Math., vol. 178, Dekker, New York, 1996, pp. 259–288. MR 1386683
- Wolfgang M. Ruess, Existence and stability of solutions to partial functional-differential equations with delay, Adv. Differential Equations 4 (1999), no. 6, 843–876. MR 1729393
- Wolfgang M. Ruess, Flow invariance for nonlinear partial differential delay equations, Trans. Amer. Math. Soc. 361 (2009), no. 8, 4367–4403. MR 2500891, DOI 10.1090/S0002-9947-09-04833-8
- W. M. Ruess and W. H. Summers, Operator semigroups for functional-differential equations with delay, Trans. Amer. Math. Soc. 341 (1994), no. 2, 695–719. MR 1214785, DOI 10.1090/S0002-9947-1994-1214785-X
- George Seifert, Positively invariant closed sets for systems of delay differential equations, J. Differential Equations 22 (1976), no. 2, 292–304. MR 427781, DOI 10.1016/0022-0396(76)90029-2
- C. C. Travis and G. F. Webb, Existence and stability for partial functional differential equations, Trans. Amer. Math. Soc. 200 (1974), 395–418. MR 382808, DOI 10.1090/S0002-9947-1974-0382808-3
- G. F. Webb, Autonomous nonlinear functional differential equations and nonlinear semigroups, J. Math. Anal. Appl. 46 (1974), 1–12. MR 348224, DOI 10.1016/0022-247X(74)90277-7
Bibliographic Information
- Naoki Tanaka
- Affiliation: Department of Mathematics, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan
- Email: tanaka.naoki@shizuoka.ac.jp
- Received by editor(s): July 28, 2013
- Received by editor(s) in revised form: December 6, 2013, December 25, 2013, and December 27, 2013
- Published electronically: January 9, 2015
- Additional Notes: The author was partially supported by JSPS Grant-in-Aid for Scientific Research (C) No. 25400134
- Communicated by: Pamela B. Gorkin
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 143 (2015), 2459-2468
- MSC (2010): Primary 47J35; Secondary 47H06, 47H20
- DOI: https://doi.org/10.1090/S0002-9939-2015-12437-9
- MathSciNet review: 3326028