Global weighted estimates for nonlinear elliptic obstacle problems over Reifenberg domains
HTML articles powered by AMS MathViewer
- by Sun-Sig Byun, Yumi Cho and Dian K. Palagachev
- Proc. Amer. Math. Soc. 143 (2015), 2527-2541
- DOI: https://doi.org/10.1090/S0002-9939-2015-12458-6
- Published electronically: January 21, 2015
- PDF | Request permission
Abstract:
We study the obstacle problem for an elliptic equation with discontinuous nonlinearity over a nonsmooth domain, assuming that the irregular obstacle and the nonhomogeneous term belong to suitable weighted Sobolev and Lebesgue spaces, respectively, with weights taken in the Muckenhoupt classes. We establish a Calderón–Zygmund type result by proving that the gradient of the weak solution to the nonlinear obstacle problem has the same weighted integrability as both the gradient of the obstacle and the nonhomogeneous term, provided that the nonlinearity has a small BMO-semi norm with respect to the gradient, and the boundary of the domain is $\delta$-Reifenberg flat. We also get global regularity in the settings of the Morrey and Hölder spaces for the weak solutions to the problem considered.References
- Verena Bögelein, Frank Duzaar, and Giuseppe Mingione, Degenerate problems with irregular obstacles, J. Reine Angew. Math. 650 (2011), 107–160. MR 2770559, DOI 10.1515/CRELLE.2011.006
- Verena Bögelein and Christoph Scheven, Higher integrability in parabolic obstacle problems, Forum Math. 24 (2012), no. 5, 931–972. MR 2988568, DOI 10.1515/form.2011.091
- Sun-Sig Byun and Dian K. Palagachev, Morrey regularity of solutions to quasilinear elliptic equations over Reifenberg flat domains, Calc. Var. Partial Differential Equations 49 (2014), no. 1-2, 37–76. MR 3148106, DOI 10.1007/s00526-012-0574-4
- S. Byun and D.K. Palagachev, Boundedness of the weak solutions to quasilinear elliptic equations with Morrey data, Indiana Univ. Math. J. 62 (2013), no. 5, 1565–1585.
- Sun-Sig Byun, Dian K. Palagachev, and Seungjin Ryu, Weighted $W^{1,p}$ estimates for solutions of non-linear parabolic equations over non-smooth domains, Bull. Lond. Math. Soc. 45 (2013), no. 4, 765–778. MR 3081545, DOI 10.1112/blms/bdt011
- Sun-Sig Byun, Yumi Cho, and Lihe Wang, Calderón-Zygmund theory for nonlinear elliptic problems with irregular obstacles, J. Funct. Anal. 263 (2012), no. 10, 3117–3143. MR 2973336, DOI 10.1016/j.jfa.2012.07.018
- Sun-Sig Byun and Lihe Wang, Parabolic equations in time dependent Reifenberg domains, Adv. Math. 212 (2007), no. 2, 797–818. MR 2329320, DOI 10.1016/j.aim.2006.12.002
- Sun-Sig Byun and Lihe Wang, Nonlinear gradient estimates for elliptic equations of general type, Calc. Var. Partial Differential Equations 45 (2012), no. 3-4, 403–419. MR 2984138, DOI 10.1007/s00526-011-0463-2
- L. A. Caffarelli, The obstacle problem revisited, J. Fourier Anal. Appl. 4 (1998), no. 4-5, 383–402. MR 1658612, DOI 10.1007/BF02498216
- Sergio Campanato, Proprietà di inclusione per spazi di Morrey, Ricerche Mat. 12 (1963), 67–86 (Italian). MR 156228
- R. R. Coifman and R. Rochberg, Another characterization of BMO, Proc. Amer. Math. Soc. 79 (1980), no. 2, 249–254. MR 565349, DOI 10.1090/S0002-9939-1980-0565349-8
- Guy David and Tatiana Toro, Reifenberg parameterizations for sets with holes, Mem. Amer. Math. Soc. 215 (2012), no. 1012, vi+102. MR 2907827, DOI 10.1090/S0065-9266-2011-00629-5
- Michela Eleuteri and Jens Habermann, Calderón-Zygmund type estimates for a class of obstacle problems with $p(x)$ growth, J. Math. Anal. Appl. 372 (2010), no. 1, 140–161. MR 2672516, DOI 10.1016/j.jmaa.2010.05.072
- Lawrence C. Evans, Partial differential equations, 2nd ed., Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 2010. MR 2597943, DOI 10.1090/gsm/019
- Avner Friedman, Variational principles and free-boundary problems, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1982. MR 679313
- Carlos E. Kenig and Tatiana Toro, Free boundary regularity for harmonic measures and Poisson kernels, Ann. of Math. (2) 150 (1999), no. 2, 369–454. MR 1726699, DOI 10.2307/121086
- David Kinderlehrer and Guido Stampacchia, An introduction to variational inequalities and their applications, Classics in Applied Mathematics, vol. 31, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000. Reprint of the 1980 original. MR 1786735, DOI 10.1137/1.9780898719451
- O. A. Ladyzhenskaya and N. N. Ural′tseva, LineÄnye i kvazilineÄnye uravneniya èllipticheskogo tipa, Izdat. “Nauka”, Moscow, 1973 (Russian). Second edition, revised. MR 0509265
- A. Lemenant, E. Milakis and L. V. Spinolo, On the extension property of Reifenberg-flat domains, (2012), arXiv:1209.3602.
- John L. Lewis and Kaj Nyström, Regularity and free boundary regularity for the $p$-Laplace operator in Reifenberg flat and Ahlfors regular domains, J. Amer. Math. Soc. 25 (2012), no. 3, 827–862. MR 2904575, DOI 10.1090/S0894-0347-2011-00726-1
- Tadele Mengesha and Nguyen Cong Phuc, Weighted and regularity estimates for nonlinear equations on Reifenberg flat domains, J. Differential Equations 250 (2011), no. 5, 2485–2507. MR 2756073, DOI 10.1016/j.jde.2010.11.009
- Benjamin Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226. MR 293384, DOI 10.1090/S0002-9947-1972-0293384-6
- Dian K. Palagachev and Lubomira G. Softova, Quasilinear divergence form parabolic equations in Reifenberg flat domains, Discrete Contin. Dyn. Syst. 31 (2011), no. 4, 1397–1410. MR 2836359, DOI 10.3934/dcds.2011.31.1397
- Dian K. Palagachev and Lubomira G. Softova, The Calderón-Zygmund property for quasilinear divergence form equations over Reifenberg flat domains, Nonlinear Anal. 74 (2011), no. 5, 1721–1730. MR 2764374, DOI 10.1016/j.na.2010.10.044
- E. R. Reifenberg, Solution of the Plateau Problem for $m$-dimensional surfaces of varying topological type, Acta Math. 104 (1960), 1–92. MR 114145, DOI 10.1007/BF02547186
- José-Francisco Rodrigues, Obstacle problems in mathematical physics, North-Holland Mathematics Studies, vol. 134, North-Holland Publishing Co., Amsterdam, 1987. Notas de Matemática [Mathematical Notes], 114. MR 880369
- C. Scheven, Existence of localizable solutions to nonlinear parabolic problems with irregular obstacles, preprint, (2011).
- Christoph Scheven, Gradient potential estimates in non-linear elliptic obstacle problems with measure data, J. Funct. Anal. 262 (2012), no. 6, 2777–2832. MR 2885965, DOI 10.1016/j.jfa.2012.01.003
- Lubomiea Softova, Singular integrals and commutators in generalized Morrey spaces, Acta Math. Sin. (Engl. Ser.) 22 (2006), no. 3, 757–766. MR 2219687, DOI 10.1007/s10114-005-0628-z
- Alberto Torchinsky, Real-variable methods in harmonic analysis, Pure and Applied Mathematics, vol. 123, Academic Press, Inc., Orlando, FL, 1986. MR 869816
- Tatiana Toro, Doubling and flatness: geometry of measures, Notices Amer. Math. Soc. 44 (1997), no. 9, 1087–1094. MR 1470167
Bibliographic Information
- Sun-Sig Byun
- Affiliation: Department of Mathematical Sciences and Research Institute of Mathematics, Seoul National University, Seoul 151-747, Korea
- MR Author ID: 738383
- Email: byun@snu.ac.kr
- Yumi Cho
- Affiliation: Department of Mathematical Sciences, Seoul National University, Seoul 151-747, Korea
- Address at time of publication: School of Mathematics, Korea Institute for Advanced Study, Seoul 120-722, Korea
- Email: yumicho@kias.re.kr
- Dian K. Palagachev
- Affiliation: Dipartimento di Meccanica, Matematica e Management (DMMM), Politecnico di Bari, 70125 Bari, Italy
- Email: dian.palagachev@poliba.it
- Received by editor(s): August 6, 2013
- Received by editor(s) in revised form: January 15, 2014
- Published electronically: January 21, 2015
- Additional Notes: The first author was supported by KOSEF-R01-2008-000-11553-0
The third author is a member of INdAM–GNAMPA - Communicated by: Tatiana Toro
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 143 (2015), 2527-2541
- MSC (2010): Primary 35J87; Secondary 35R05, 35J60, 35B65, 46E35
- DOI: https://doi.org/10.1090/S0002-9939-2015-12458-6
- MathSciNet review: 3326034