Remarks on self-similar solutions for the surface quasi-geostrophic equation and its generalization
HTML articles powered by AMS MathViewer
- by Marco Cannone and Liutang Xue
- Proc. Amer. Math. Soc. 143 (2015), 2613-2622
- DOI: https://doi.org/10.1090/S0002-9939-2015-12468-9
- Published electronically: February 16, 2015
- PDF | Request permission
Abstract:
We prove some nonexistence results of self-similar singular solutions for the surface quasi-geostrophic equation and its generalization by relying on the fundamental local $L^p$-inequality of the self-similar quantity.References
- C. Bardos, Existence et unicité de la solution de l’équation d’Euler en dimension deux, J. Math. Anal. Appl. 40 (1972), 769–790 (French). MR 333488, DOI 10.1016/0022-247X(72)90019-4
- A. Castro and D. Córdoba, Infinite energy solutions of the surface quasi-geostrophic equation, Adv. Math. 225 (2010), no. 4, 1820–1829. MR 2680191, DOI 10.1016/j.aim.2010.04.018
- Dongho Chae, Nonexistence of self-similar singularities for the 3D incompressible Euler equations, Comm. Math. Phys. 273 (2007), no. 1, 203–215. MR 2308755, DOI 10.1007/s00220-007-0249-8
- Dongho Chae, On the conserved quantities for the weak solutions of the Euler equations and the quasi-geostrophic equations, Comm. Math. Phys. 266 (2006), no. 1, 197–210. MR 2231970, DOI 10.1007/s00220-006-0018-0
- Dongho Chae, Antonio Córdoba, Diego Córdoba, and Marco A. Fontelos, Finite time singularities in a 1D model of the quasi-geostrophic equation, Adv. Math. 194 (2005), no. 1, 203–223. MR 2141858, DOI 10.1016/j.aim.2004.06.004
- Peter Constantin, Gautam Iyer, and Jiahong Wu, Global regularity for a modified critical dissipative quasi-geostrophic equation, Indiana Univ. Math. J. 57 (2008), no. 6, 2681–2692. MR 2482996, DOI 10.1512/iumj.2008.57.3629
- Peter Constantin, Andrew J. Majda, and Esteban Tabak, Formation of strong fronts in the $2$-D quasigeostrophic thermal active scalar, Nonlinearity 7 (1994), no. 6, 1495–1533. MR 1304437
- Dongho Chae and Roman Shvydkoy, On formation of a locally self-similar collapse in the incompressible Euler equations, Arch. Ration. Mech. Anal. 209 (2013), no. 3, 999–1017. MR 3067830, DOI 10.1007/s00205-013-0630-z
- Antonio Córdoba, Diego Córdoba, and Marco A. Fontelos, Formation of singularities for a transport equation with nonlocal velocity, Ann. of Math. (2) 162 (2005), no. 3, 1377–1389. MR 2179734, DOI 10.4007/annals.2005.162.1377
- F. de la Hoz and M. A. Fontelos, The structure of singularities in nonlocal transport equations, J. Phys. A 41 (2008), no. 18, 185204, 12. MR 2453970, DOI 10.1088/1751-8113/41/18/185204
- Jens Eggers and Marco A. Fontelos, The role of self-similarity in singularities of partial differential equations, Nonlinearity 22 (2009), no. 1, R1–R44. MR 2470260, DOI 10.1088/0951-7715/22/1/001
- Isaac M. Held, Raymond T. Pierrehumbert, Stephen T. Garner, and Kyle L. Swanson, Surface quasi-geostrophic dynamics, J. Fluid Mech. 282 (1995), 1–20. MR 1312238, DOI 10.1017/S0022112095000012
- Roman Shvydkoy, A study of energy concentration and drain in incompressible fluids, Nonlinearity 26 (2013), no. 2, 425–436. MR 3007898, DOI 10.1088/0951-7715/26/2/425
- L. Xue, Discretely self-similar singular solutions for the incompressible Euler equations. ArXiv:1408.6619v1[math.AP].
- V. I. Judovič, Non-stationary flows of an ideal incompressible fluid, Ž. Vyčisl. Mat i Mat. Fiz. 3 (1963), 1032–1066 (Russian). MR 158189
Bibliographic Information
- Marco Cannone
- Affiliation: Université Paris-Est Marne-la-Vallée, Laboratorie d’Analyse et de Mathématiques Appliquées, Cité Descartes, Champs-sur-Marne, 77454 Marne-la-Vallée, Cedex 2, France
- Email: marco.cannone@univ-mlv.fr
- Liutang Xue
- Affiliation: Université Paris-Est Marne-la-Vallée, Laboratorie d’Analyse et de Mathématiques Appliquées, Cité Descartes, Champs-sur-Marne, 77454 Marne-la-Vallée, Cedex 2, France
- Address at time of publication: School of Mathematical Sciences, Beijing Normal University, Beijing 100875, People’s Republic of China
- Email: xue_{}lt@163.com
- Received by editor(s): October 11, 2013
- Received by editor(s) in revised form: February 5, 2014
- Published electronically: February 16, 2015
- Communicated by: Joachim Krieger
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 143 (2015), 2613-2622
- MSC (2010): Primary 76B03, 35Q31, 35Q35, 35Q86
- DOI: https://doi.org/10.1090/S0002-9939-2015-12468-9
- MathSciNet review: 3326041