A criterion for completeness
HTML articles powered by AMS MathViewer
- by Peter Schenzel
- Proc. Amer. Math. Soc. 143 (2015), 2387-2394
- DOI: https://doi.org/10.1090/S0002-9939-2015-12470-7
- Published electronically: January 22, 2015
- PDF | Request permission
Abstract:
Let $(R,\mathfrak {m})$ denote a local ring with $E = E_R(k)$ the injective hull of $k = R/\mathfrak {m}$, its residue field. Let $M$ denote a finitely generated $R$-module. By Jensen’s result it follows that $\mathrm {Ext}^1_R(F,M) = 0$ for any flat $R$-module $F$ if and only if $M$ is complete. Let $\underline {x} = x_1,\ldots ,x_r$ be a system of elements of $R$ such that $\mathrm {Rad}\underline {x}R = \mathfrak {m}$. In the main result it is shown that the vanishing of $\mathrm {Ext}_R^1(F,M), F = \bigoplus _{i = 1}^r R_{x_i},$ implies that $M$ is complete. It is known from work of Enochs and Jenda that $\mathrm {Hom}_R(E_R(R/\mathfrak {p}), E) \simeq \widehat {R_{\mathfrak {p}}^{\mu _{\mathfrak {p}}}}$ for a certain finite or infinite number $\mu _{\mathfrak {p}}$. We discuss which $\mu _{\mathfrak {p}}$ might occur for certain primes with $\dim R/\mathfrak {p} = 1$.References
- Richard G. Belshoff, Edgar E. Enochs, and Juan Ramon García Rozas, Generalized Matlis duality, Proc. Amer. Math. Soc. 128 (2000), no. 5, 1307–1312. MR 1641645, DOI 10.1090/S0002-9939-99-05130-8
- Ragnar-Olaf Buchweitz and Hubert Flenner, Power series rings and projectivity, Manuscripta Math. 119 (2006), no. 1, 107–114. MR 2194381, DOI 10.1007/s00229-005-0608-8
- Edgar E. Enochs and Overtoun M. G. Jenda, Relative homological algebra, De Gruyter Expositions in Mathematics, vol. 30, Walter de Gruyter & Co., Berlin, 2000. MR 1753146, DOI 10.1515/9783110803662
- Anders J. Frankild and Sean Sather-Wagstaff, Detecting completeness from Ext-vanishing, Proc. Amer. Math. Soc. 136 (2008), no. 7, 2303–2312. MR 2390496, DOI 10.1090/S0002-9939-08-09199-5
- Robin Hartshorne, Local cohomology, Lecture Notes in Mathematics, No. 41, Springer-Verlag, Berlin-New York, 1967. A seminar given by A. Grothendieck, Harvard University, Fall, 1961. MR 0224620
- C. U. Jensen, On the vanishing of $\underleftarrow {\mmlToken {mi}{lim}}^{(i)}$, J. Algebra 15 (1970), 151–166. MR 260839, DOI 10.1016/0021-8693(70)90071-2
- C. U. Jensen, On $\textrm {Ext}^{1}_{R}(A,\,R)$ for torsion-free $A$, Bull. Amer. Math. Soc. 78 (1972), 831–834. MR 311657, DOI 10.1090/S0002-9904-1972-13052-0
- Eben Matlis, Injective modules over Noetherian rings, Pacific J. Math. 8 (1958), 511–528. MR 99360
- Masayoshi Nagata, Local rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0155856
- Peter Schenzel, Proregular sequences, local cohomology, and completion, Math. Scand. 92 (2003), no. 2, 161–180. MR 1973941, DOI 10.7146/math.scand.a-14399
- Peter Schenzel, On the structure of the endomorphism ring of a certain local cohomology module, J. Algebra 344 (2011), 229–245. MR 2831938, DOI 10.1016/j.jalgebra.2011.07.014
- P. Schenzel, A note on the Matlis dual of a certain injective hull, J. Pure Appl. Algebra, 219, no 3, (2015), 666-671.
- Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. MR 1269324, DOI 10.1017/CBO9781139644136
- Thomas Zink, Endlichkeitsbedingungen für Moduln über einem Noetherschen Ring, Math. Nachr. 64 (1974), 239–252 (German). MR 364223, DOI 10.1002/mana.19740640114
Bibliographic Information
- Peter Schenzel
- Affiliation: Institut für Informatik, Martin-Luther-Universität Halle-Wittenberg, D — 06 099 Halle (Saale), Germany
- MR Author ID: 155825
- ORCID: 0000-0003-1569-5100
- Email: peter.schenzel@informatik.uni-halle.de
- Received by editor(s): August 1, 2013
- Received by editor(s) in revised form: January 25, 2014
- Published electronically: January 22, 2015
- Communicated by: Irena Peeva
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 143 (2015), 2387-2394
- MSC (2010): Primary 13J10; Secondary 13C11, 13D07
- DOI: https://doi.org/10.1090/S0002-9939-2015-12470-7
- MathSciNet review: 3326021