A multiplicity bound for graded rings and a criterion for the Cohen-Macaulay property
HTML articles powered by AMS MathViewer
- by Craig Huneke, Paolo Mantero, Jason McCullough and Alexandra Seceleanu
- Proc. Amer. Math. Soc. 143 (2015), 2365-2377
- DOI: https://doi.org/10.1090/S0002-9939-2015-12612-3
- Published electronically: February 4, 2015
- PDF | Request permission
Abstract:
Let $R$ be a polynomial ring over a field. We prove an upper bound for the multiplicity of $R/I$ when $I$ is a homogeneous ideal of the form $I=J+(F)$, where $J$ is a Cohen-Macaulay ideal and $F\notin J$. The bound is given in terms of two invariants of $R/J$ and the degree of $F$. We show that ideals achieving this upper bound have high depth, and provide a purely numerical criterion for the Cohen-Macaulay property. Applications to quasi-Gorenstein rings and almost complete intersections are given.References
- W. Bruns and J. Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, Vol. 39. Cambridge University Press, Cambridge, 2nd edition, 1998.
- CoCoA, Computations in Commutative Algebra. Available at http://cocoa.dima.unige.it/
- David Eisenbud, Mark Green, and Joe Harris, Higher Castelnuovo theory, Astérisque 218 (1993), 187–202. Journées de Géométrie Algébrique d’Orsay (Orsay, 1992). MR 1265314
- David Eisenbud and Joe Harris, On varieties of minimal degree (a centennial account), Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987, pp. 3–13. MR 927946, DOI 10.1090/pspum/046.1/927946
- David Eisenbud and Frank-Olaf Schreyer, Betti numbers of graded modules and cohomology of vector bundles, J. Amer. Math. Soc. 22 (2009), no. 3, 859–888. MR 2505303, DOI 10.1090/S0894-0347-08-00620-6
- Bahman Engheta, Bound on the multiplicity of almost complete intersections, Comm. Algebra 37 (2009), no. 3, 948–953. MR 2503187, DOI 10.1080/00927870802278784
- Bahman Engheta, A bound on the projective dimension of three cubics, J. Symbolic Comput. 45 (2010), no. 1, 60–73. MR 2568899, DOI 10.1016/j.jsc.2009.06.005
- Louiza Fouli, Claudia Polini, and Bernd Ulrich, Annihilators of graded components of the canonical module, and the core of standard graded algebras, Trans. Amer. Math. Soc. 362 (2010), no. 12, 6183–6203. MR 2678970, DOI 10.1090/S0002-9947-2010-05056-1
- E. S. Golod, A note on perfect ideals, Algebra (A. I. Kostrikin, ed.), Moscow State Univ. Publishing House, 1980, 37–39.
- William Heinzer, Mee-Kyoung Kim, and Bernd Ulrich, The Cohen-Macaulay and Gorenstein properties of rings associated to filtrations, Comm. Algebra 39 (2011), no. 10, 3547–3580. MR 2845585, DOI 10.1080/00927872.2011.552081
- C. Huneke, P. Mantero, J. McCullough and A. Seceleanu, Ideals generated by 4 quadric polynomials, preprint. http://arxiv.org/abs/1403.6334
- Craig Huneke and Bernd Ulrich, The structure of linkage, Ann. of Math. (2) 126 (1987), no. 2, 277–334. MR 908149, DOI 10.2307/1971402
- Craig Huneke and Bernd Ulrich, General hyperplane sections of algebraic varieties, J. Algebraic Geom. 2 (1993), no. 3, 487–505. MR 1211996
- Mark Johnson and Bernd Ulrich, Serre’s condition $R_k$ for associated graded rings, Proc. Amer. Math. Soc. 127 (1999), no. 9, 2619–2624. MR 1600093, DOI 10.1090/S0002-9939-99-04841-8
- Macaulay 2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/
- Juan C. Migliore, Introduction to liaison theory and deficiency modules, Progress in Mathematics, vol. 165, Birkhäuser Boston, Inc., Boston, MA, 1998. MR 1712469, DOI 10.1007/978-1-4612-1794-7
- Masayoshi Nagata, Local rings, Robert E. Krieger Publishing Co., Huntington, N.Y., 1975. Corrected reprint. MR 0460307
- Irena Peeva and Mike Stillman, Open problems on syzygies and Hilbert functions, J. Commut. Algebra 1 (2009), no. 1, 159–195. MR 2462384, DOI 10.1216/JCA-2009-1-1-159
- C. Peskine and L. Szpiro, Liaison des variétés algébriques. I, Invent. Math. 26 (1974), 271–302 (French). MR 364271, DOI 10.1007/BF01425554
- Pierre Samuel, La notion de multiplicité en algèbre et en géométrie algébrique, J. Math. Pures Appl. (9) 30 (1951), 159–205 (French). MR 48103
- Peter Schenzel, On Buchsbaum rings and their canonical modules, Seminar D. Eisenbud/B. Singh/W. Vogel, Vol. 1, Teubner-Texte zur Mathematik, vol. 29, Teubner, Leipzig, 1980, pp. 65–77. MR 610064
- Peter Schenzel, A note on almost complete intersections, Seminar D. Eisenbud/B. Singh/W. Vogel, Vol. 2, Teubner-Texte zur Mathematik, vol. 48, Teubner, Leipzig, 1982, pp. 49–54. MR 686457
- Peter Schenzel, Notes on liaison and duality, J. Math. Kyoto Univ. 22 (1982/83), no. 3, 485–498. MR 674606, DOI 10.1215/kjm/1250521732
- Olga Lavila-Vidal and Santiago Zarzuela, On the Gorenstein property of the diagonals of the Rees algebra, Collect. Math. 49 (1998), no. 2-3, 383–397. Dedicated to the memory of Fernando Serrano. MR 1677120
Bibliographic Information
- Craig Huneke
- Affiliation: Department of Mathematics, University of Virginia, Charlottesville, Virginia 22904
- MR Author ID: 89875
- Email: huneke@virginia.edu
- Paolo Mantero
- Affiliation: Department of Mathematics, University of California Riverside, Riverside, California 92521
- MR Author ID: 997883
- ORCID: 0000-0001-5784-9994
- Email: mantero@math.ucr.edu
- Jason McCullough
- Affiliation: Department of Mathematics, Rider University, Lawrence Township, New Jersey 08648
- MR Author ID: 790865
- Email: jmccullough@rider.edu
- Alexandra Seceleanu
- Affiliation: Department of Mathematics, University of Nebraska at Lincoln, Lincoln, Nebraska 68588
- MR Author ID: 896988
- ORCID: 0000-0002-7929-5424
- Email: aseceleanu2@math.unl.edu
- Received by editor(s): January 23, 2014
- Published electronically: February 4, 2015
- Additional Notes: The first author was partially supported by NSF grant DMS-1259142.
The second and third authors were partially supported by AMS-Simons Travel Grants. - Communicated by: Irena Peeva
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 143 (2015), 2365-2377
- MSC (2010): Primary 13C14; Secondary 13H15, 13D40
- DOI: https://doi.org/10.1090/S0002-9939-2015-12612-3
- MathSciNet review: 3326019