PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 143, Number 7, July 2015, Pages 2731–2741 S 0002-9939(2015)12297-6 Article electronically published on February 26, 2015

CORES FOR QUASICONVEX ACTIONS

MICHAH SAGEEV AND DANIEL T. WISE

(Communicated by Kevin Whyte)

ABSTRACT. We prove that any full relatively quasiconvex subgroup of a relatively hyperbolic group acting on a CAT(0) cube complex has a convex cocompact core. We give an application towards separability of quasiconvex subgroups of the fundamental group of a special cube complex.

1. Introduction

The aim of this paper is the following theorem. We refer to Section 4 for the definitions related to relative quasiconvexity.

Theorem 1.1. Let \widetilde{X} be a CAT(0) cube complex with a proper cocompact action by G. Suppose that G is hyperbolic relative to subgroups $\{P_1, \ldots, P_r\}$. Let J be a full relatively quasiconvex subgroup. For each compact subspace $Q \subset \widetilde{X}$, there exists a J-cocompact convex subcomplex \widetilde{Y} that contains Q.

In the nonrelative case (i.e. when G is a hyperbolic group and J is a quasiconvex subgroup), the above theorem was proved independently by Haglund [6], who obtained the following:

Theorem 1.2. Let G be a group acting on a finite-dimensional locally-finite δ -hyperbolic CAT(0) cube complex \widetilde{X} , and suppose that the action is quasiconvex. There exists a convex subcomplex of \widetilde{X} on which G acts cocompactly.

There are several situations where analogues of Theorem 1.1 hold (e.g. certain small-cancellation groups, certain groups with simplicial nonpositive curvature, Kleinian groups). However, outside some stronger combinatorial or geometric context, it is not known whether convex cocompact cores always exist for a quasiconvex subgroup H of a word-hyperbolic group G acting properly and cocompactly on a CAT(0) space.

The very simplest version of the above core theorems is the widely used 1-dimensional observation that the covering spaces of graphs corresponding to finitely generated subgroups have compact cores. The idea is implicit in Scott's work [15] which was generalized in [1], and appeared for certain 2-dimensional nonpositively curved square complexes in [17].

Received by the editors March 13, 2012 and, in revised form, August 7, 2012 and April 15, 2013.

 $^{2010\} Mathematics\ Subject\ Classification.\ Primary\ 20F67.$

The first author's research was supported by ISF grant #530/11.

The second author's research was supported by NSERC.

Figure 1

The fullness condition is necessary, as there are simple examples of infinite-index quasi-isometrically embedded subgroups J of $G = \pi_1 X$ where X is a compact non-positively curved cube complex, such that no convex proper subcomplex contains $(J\widetilde{x})$. For instance, when X is the n-torus T^n , for any totally diagonal cyclic subgroup $J \subset \mathbb{Z}^n$ there is no proper J-invariant convex subcomplex. See Figure 1. Another example to bear in mind are subgroups like $\langle at, bt \rangle \subset \langle a, b, t \mid [a, t], [b, t] \rangle$.

We give applications towards separable subgroups of $G = \pi_1 X$ when X is compact and G is relatively hyperbolic. Other applications arise in the relatively hyperbolic case of the results in [16], and in the cubulation result in [10].

2. CAT(0) CUBE COMPLEX DEFINITIONS

Definition 2.1 (Nonpositively curved cube complexes and local-isometries). The standard 0-cube is a point. The standard n-cube is the subspace $[-1,1]^n \subset \mathbb{R}^n$. Its codimension-i faces are the subspaces obtained by restricting i-coordinates to ± 1 . We regard each codimension-i face as an (n-i)-cube. A cube complex is a CW complex where closed n-cells are identified with standard n-cubes, and where the attaching map of each n-cell is a combinatorial map whose restriction to each codimension-i face is an (n-i)-cell. So, roughly speaking, a cube complex is obtained from a collection of cubes by identifying some of their faces by isometries.

A flag complex is a simplicial complex with the property that any collection of n+1 pairwise adjacent vertices spans an n-simplex. A cube complex is nonpositively curved if the link of each vertex is a flag complex.

A combinatorial map $\phi: A \to B$ between cube complexes is a *local-isometry* if for each $a \in A^0$ mapping to $b \in B^0$ the corresponding map $\phi: \operatorname{link}_A(a) \to \operatorname{link}_B(b)$ is injective and adjacency preserving. As observed in [13], local isometries of nonpositively curved cube complexes are π_1 -injective and lift to combinatorial isometries between their universal covers.

Definition 2.2 (Hyperplanes, halfspaces, and hulls). A midcube is the subspace of an n-cube $[-1,1]^n$ obtained by restricting exactly one of its coordinates to 0. A hyperplane H is a nonempty connected subspace of a CAT(0) cube complex \widetilde{X} with the property that its intersection with each cube is either \varnothing or consists of a midcube. The open carrier $N^o(H)$ of a hyperplane H is the union of all open cubes intersecting H. A halfspace is a component of $\widetilde{X} - N^o(H)$. Note that each hyperplane is convex relative to the CAT(0) metric geometry, and each halfspace is convex with respect to both combinatorial and metric geometry. As shown in [14],

every midcube of \widetilde{X} lies in a unique hyperplane, and each hyperplane separates \widetilde{X} into precisely two components.

Let $D \subset \widetilde{X}$. The *hull* of D is the intersection of all halfspaces containing D. If no halfspace contains D, then define $\operatorname{Hull}(D) = \widetilde{X}$. Note that $\operatorname{Hull}(D)$ is a convex $\operatorname{CAT}(0)$ subcomplex of \widetilde{X} .

3. Proof of Theorem 1.2

Before going into the relative case, we first present a proof of Theorem 1.2. We do this for the sake of completeness and because the relative version is built on this proof.

We need the following elementary lemma:

Lemma 3.1. Consider \mathbb{R}^n with the standard basis $\mathcal{E} = \{\vec{e}_1, \dots, \vec{e}_n\}$. Let $\theta_n = \arcsin(1/\sqrt{n})$. If L is a ray emanating from the origin, then there is a codimension-1 subspace H spanned by d-1 vectors in \mathcal{E} , such that $A = \{\vec{e}_1, \dots, \vec{e}_n\}$.

Proof. We show that the angle with one of the hyperplanes is $\geq \theta_n$. Consider the unit vector \vec{v} in the direction of L, and let (v_1, \ldots, v_n) be the coordinates of \vec{v} relative to the standard basis. Since $\sum v_i^2 = 1$, there exists i such that $|v_i| \geq 1/\sqrt{n}$. Let ζ denote the acute angle between \vec{v} and $\pm \vec{e_i}$. Since $\zeta \leq \arccos(1/\sqrt{n})$ the angle between \vec{v} and the plane spanned by $\mathcal{E} - \{\vec{e_i}\}$ is at least $\arcsin(1/\sqrt{n})$.

We will employ the following immediate consequence of Lemma 3.1 (see Figure 2):

Remark 3.2. Let p be a vertex of an n-cube σ with $n \geq 1$. Let γ be a ray in σ emanating from p. Then there is a midcube H of σ such that γ intersects H at a point b such that $\langle (\gamma, H) \geq \theta_n \text{ and } \mathsf{d}(p, b) \leq \sqrt{n}$.

The group J acts quasiconvexly on \widetilde{X} if for each $x \in \widetilde{X}$, there exists R such that each geodesic with endpoints on Jx lies within $\mathcal{N}_R(Jx)$. Note that when \widetilde{X} is δ -hyperbolic, for any R there exists $\mu = \mu(R)$ such that any geodesic with endpoints in $\mathcal{N}_R(Jx)$ actually lies within $\mathcal{N}_\mu(Jx)$.

Suppose that J acts quasiconvexly on \widetilde{X} , and let $\mathcal{N}_R(Jx)$ be a neighborhood of an orbit Jx, such that geodesics between points of Jx lie in $\mathcal{N}_R(Jx)$. We will show the following:

Proposition 3.3. Let J act quasiconvexly on the δ -hyperbolic, finite-dimensional CAT(0) cube complex \widetilde{X} . For each $x \in \widetilde{X}$ and R > 0 there exists S such that $Hull(\mathcal{N}_R(Jx)) \subset \mathcal{N}_S(Jx)$.

In the event that \widetilde{X} is locally-finite, J acts cocompactly on $\mathcal{N}_S(Jx)$. It thus follows from Proposition 3.3 that J acts cocompactly on the CAT(0) cube complex $\mathrm{Hull}(\mathcal{N}_R(Jx))$ and Theorem 1.2 follows.

Proof. Let $d = \dim(\widetilde{X})$. Let δ be the hyperbolicity constant for \widetilde{X} . Let $\theta = \theta_d$ be as in Lemma 3.1. Without loss of generality, we assume R is large enough that $\mathcal{N}_R(Jx)$ is connected. By the quasiconvexity of Jx, there exists μ so that any geodesic joining points within $\mathcal{N}_{R+1}(Jx)$ lies entirely within $\mathcal{N}_{\mu}(Jx)$. Let $S = 2\sqrt{d} + \mu + \delta \csc(\theta/2) + \delta$.

As each $a \in \operatorname{Hull}(\mathcal{N}_R(Jx))$ lies within distance \sqrt{d} of some 0-cube $p \in \operatorname{Hull}(\mathcal{N}_R(Jx))$, it suffices to show that $d(p, Jx) \leq S - \sqrt{d}$ for each

FIGURE 2. H cuts through a cube σ that γ passes through.

FIGURE 3. If d(p, Jx) > S, then p and Jx lie in opposite halfspaces of H.

0-cube $p \in \operatorname{Hull}(\mathcal{N}_R(Jx))$. Suppose this is not the case. We refer the reader to Figure 3. Let p be a 0-cube of \widetilde{X} such that $\operatorname{d}(p,Jx) \geq S - \sqrt{d}$ and let γ denote a geodesic from p to c=jx where $|\gamma|=\operatorname{d}(p,Jx)$. Let σ be a cube containing an open neighborhood about p in γ . Following Remark 3.2, there exists a hyperplane H passing through γ and with $\sphericalangle(H,\gamma) \geq \theta$. Let $b=H\cap \gamma$ and note that $\operatorname{d}(p,b) \leq \sqrt{d}$.

Suppose $\mathcal{N}_R(Jx)$ does not lie entirely in a halfspace of H. Then there is a point $q \in H \cap \mathcal{N}_{R+1}(Jx)$. Consider the geodesic from c to q, and consider the δ -thin triangle $\Delta(bcq)$. Let b', c', q' denote points in cq, bq, bc that are pairwise equidistant from the vertices and within δ of each other. Observe that $d(b, q') \leq \delta \csc(\theta/2)$ since the isosceles triangle $\Delta(bq'c')$ has legs of length $\leq \delta \csc(\theta/2)$ since its angle is $\geq \theta$ and its base has length $\leq \delta$. We have

$$\mathsf{d}(p,Jx) \leq \mathsf{d}(p,b) + \mathsf{d}(b,q') + \mathsf{d}(q',b') + \mathsf{d}(b',Jx) \leq \sqrt{d} + \delta \csc(\theta/2) + \delta + \mu$$
 and this contradicts that
$$\mathsf{d}(p,Jx) > S - \sqrt{d} = \sqrt{d} + \mu + \delta \csc(\theta/2) + \delta.$$

4. Background on relative hyperbolicity and quasiconvexity

Following Bowditch [2], a group G is hyperbolic relative to subgroups $\{P_1, \ldots, P_r\}$ if it acts cocompactly and with finite edge stabilizers on a graph K_G such that the following holds: Each edge stabilizer is finite; each infinite vertex stabilizer is a conjugate of some P_i ; the graph K_G is hyperbolic; and K_G is fine in the sense that each edge of K_G lies in finitely many length n cycles for each n. In this setting, a subgroup J of G is relatively quasiconvex if there is a connected J-cocompact subgraph $K_J \subset K_G$ that is quasi-isometrically embedded. We refer the reader to [8] for a survey of the various equivalent approaches to relative hyperbolicity and accompanying notions of quasiconvexity, and to [12] for an explanation that the relative quasiconvexity notion above is equivalent to those surveyed in [8].

Among the various characteristic features of relatively hyperbolic groups is the following thin triangle property from [3, Sec 8.1.3].

Theorem 4.1. Let (G, \mathbb{P}) be relatively hyperbolic, and let Γ be the Cayley graph of G with respect to some finite generating set. For each ϵ there is a constant δ such that if Δ is an ϵ -quasigeodesic triangle with sides c_0 , c_1 and c_2 , then there is either:

- (1) a point p such that $\mathcal{N}_{\delta/2}(p)$ intersects each side of Δ or
- (2) a peripheral coset gP such that $\mathcal{N}_{\delta}(gP)$ intersects each side of Δ .

In the second case, each side c_i of Δ has a subpath c'_i that lies in $\mathcal{N}_{\delta}(gP)$ such that (coefficients mod 3) the terminal endpoint of c'_i and the initial endpoint of c'_{i+1} are mutually within a distance δ .

The following tighter form of Theorem 4.1 is available for an action on a CAT(0) space:

Proposition 4.2 (Relatively thin triangles). Suppose G is hyperbolic relative to $\{P_1, \ldots, P_r\}$. Let G act properly and cocompactly on a CAT(0) space \widetilde{X} . There exists δ with the following property: Let $\Delta(abc)$ be a geodesic triangle in \widetilde{X} . Either $ab \subset \mathcal{N}_{\delta}(bc \cup ca)$ or there is a translate of an orbit $F = gP_ix$ where $g \in G$ and $1 \leq i \leq r$ such that ab lies in $\mathcal{N}_{\delta}(F \cup bc \cup ca)$.

Proof. We now use that there is a G-equivariant quasi-isometry between \widetilde{X} and Γ . The geodesic triangle Δ in \widetilde{X} corresponds to an ϵ' -quasigeodesic triangle Δ' in Γ . Theorem 4.1 holds for Δ' with some constant δ' . In case (1), there is a point p that lies within $\delta'/2$ of each side of Δ' . It follows that there is a point in X that lies uniformly close to each side of Δ . It then follows from the CAT(0) inequality that each side lies in a uniform neighborhood of the other two sides. In case (2), each side of Δ' contains a subpath that lie within $\delta'/2$ of a coset gP, the endpoints of these subpaths are pairwise within $2\delta'$ of each other. The corresponding pairs of points in Δ are uniformly close, and thus the three tails of Δ are uniformly thin by the CAT(0) inequality. Furthermore, the corresponding inner subpaths lie uniformly close to a corresponding orbit Px. We are thus able to choose the desired δ .

Let G be hyperbolic relative to $\{P_1, \ldots, P_r\}$. A subgroup J is full if $J \cap P_i^g$ is either finite or of finite-index in P_i^g for each P_i and each $g \in G$.

The following statements hold because, for the relatively hyperbolic group G, quasigeodesics in its Cayley graph Γ uniformly fellow travel relative to cosets of peripheral subgroups, and cosets of peripheral subgroups are uniformly coarsely isolated from each other. This fellow-traveling property is already implicit in Farb's original exposition in [5], and has been revisited in [3].

Full relatively quasiconvex subgroups behave like quasiconvex subgroups of hyperbolic groups in the following sense:

Lemma 4.3. Let J be a full relatively quasiconvex subgroup of a relatively hyperbolic group G. There is a number μ such that every geodesic in Γ with endpoints on J lies in $\mathcal{N}_{\mu}(J)$.

Proof. This follows from [8, Cor 8.16] since the peripheral subgroups $J \cap gPg^{-1}$ of H are quasiconvex in the corresponding peripheral subgroups gPg^{-1} of G. It can also be deduced from [3, Prop. 8.28].

The following holds because (by the pigeon-hole principle) a long coarse overlap would imply an infinite coarse overlap.

Lemma 4.4. Let J be a full relatively quasiconvex subgroup of a relatively hyperbolic group G. There is a number $B = B(J, \mu, \delta)$ such that diameter $(\mathcal{N}_{\delta}(gP_i) \cap \mathcal{N}_{\mu}(J)) \leq B$ unless $[P_i^g: P_i^g \cap J] < \infty$.

Remark 4.5 (Quasiadjustment). For the case when the group G acts properly and cocompactly on a CAT(0) space \widetilde{X} , Lemma 4.3 and Lemma 4.4 hold with analogous statements: Firstly, a geodesic in \widetilde{X} with endpoints in Jx actually lies in $\mathcal{N}_{\mu}(Jx)$. Secondly, there is a number B such that diameter $(\mathcal{N}_{\delta}(gP_{i}x)\cap\mathcal{N}_{\mu}(Jx))\leq B$ unless $[P_{i}^{g}:J\cap P_{i}^{g}]<\infty$.

We conclude that, as there are finitely many J-conjugacy classes of infinite parabolic intersections $J \cap P_i^g$, there is a uniform upper bound on any finite-index $[P_i^g: J \cap P_i^g]$, and hence there exists κ such that whenever diameter $(\mathcal{N}_{\delta}(gP_ix) \cap \mathcal{N}_{\mu}(Jx)) > B$ we have $gP_ix \subset \mathcal{N}_{\kappa}(Jx)$.

5. Cores in the relatively hyperbolic case

We now give a proof of Theorem 1.1. The proof proceeds in the exact same way as the proof of Theorem 1.2 utilizing Proposition 3.3: We choose R such that $Q \subset \mathcal{N}_R(x)$ where x is the basepoint. We then show that $\operatorname{Hull}(\mathcal{N}_R(Jx)) \subset \mathcal{N}_S(Jx)$ where $S = 2\sqrt{d} + \mu + \delta \csc(\theta/2) + \delta + (B + 2\delta) \csc(\theta/2) + \kappa$. Here d, δ , and θ play the same role as they did in Proposition 3.3. Namely, $d = \dim(\widetilde{X})$, and δ is a hyperbolicity constant for \widetilde{X} , and θ is the constant provided by Lemma 3.1. The constants B, μ , and κ are as in Remark 4.5: The constant μ has the property that any geodesic in \widetilde{X} with endpoints in Jx lies in $\mathcal{N}_{\mu}(Jx)$; The constant B is such that diameter $(\mathcal{N}_{\delta}(gP_ix) \cap \mathcal{N}_{\mu}(Jx)) \leq B$ unless $[P_i^g: J \cap P_i^g] < \infty$. And the constant κ has the property that whenever diameter $(\mathcal{N}_{\delta}(gP_ix) \cap \mathcal{N}_{\mu}(Jx)) > B$ we have $gP_ix \subset \mathcal{N}_{\kappa}(Jx)$.

The initial part of the proof remains the same: Suppose $d(p, Jx) > S - \sqrt{d}$, let γ be a geodesic from p to c = jx with $|\gamma| = d(p, Jx)$, let σ be the open cube that γ initially passes through, and let H be a hyperplane cutting through σ with point of intersection $b = H \cap \gamma$ and angle of intersection $\langle (\gamma, H) \rangle = \theta$.

The second part of the proof uses relatively thin triangles in place of the ordinary thin triangle argument given in Proposition 3.3. It is for this reason that the constant S has been increased as above.

Consider the geodesic triangle $\Delta(bqc)$. By Proposition 4.2 either the three sides are δ -close to each other, or there exists $F = gP_ix$ such that each side is δ -close to the union of the other sides with gP_ix . In the former case, we proceed exactly as in the proof of Proposition 3.3. The latter case splits into two subcases according to whether or not P_i^g has a finite-index subgroup in J. We refer the reader to Figure 4.

If $[P_i^g:P_i^g\cap J]<\infty$, then we let q' and c' denote corresponding points on bq and bc farthest from b such that $\mathsf{d}(q',c')\leq \delta$. Observe that $\mathsf{d}(b,q')\leq \delta\csc(\theta/2)$. Observe that $\mathsf{d}(q',F)\leq \delta$ and so $\mathsf{d}(q',Jx)\leq \delta+\kappa$. Thus $\mathsf{d}(p,Jx)\leq \mathsf{d}(p,b)+\mathsf{d}(b,q')+\mathsf{d}(q',Jx)\leq \sqrt{d}+\delta\csc(\theta/2)+\delta+\kappa< S-\sqrt{d}$ which is impossible. If $[P_i^g:P_i^g\cap J]=\infty$, then we let q'' and c'' denote the points in qc that are

If $[P_i^g: P_i^g \cap J] = \infty$, then we let q'' and c'' denote the points in qc that are closest to q and c and have the property that $d(q'', F) \leq \delta$ and $d(c'', F) \leq \delta$. Note

Figure 4

that there are points q' and c' on bq and bc with $\mathsf{d}(q',q'') \leq \delta$ and $\mathsf{d}(c',c'') \leq \delta$. Observe that $\mathsf{d}(q'',c'') \leq B$ by Lemma 4.4, since diameter $(\mathcal{N}_{\delta}(Jx) \cap \mathcal{N}_{\mu}(F)) \leq B$. Thus $\mathsf{d}(q',c') \leq \mathsf{d}(q',q'') + \mathsf{d}(q'',c'') + \mathsf{d}(c'',c) \leq 2\delta + B$. Consideration of $\Delta(bq'c')$ shows that at least one of $\mathsf{d}(b,q')$ and $\mathsf{d}(b,c')$ is bounded above by $(2\delta+B)\csc(\theta/2)$. Suppose $\mathsf{d}(b,c') \leq (2\delta+B)\csc(\theta/2)$ and the other possibility is analogous. Then $\mathsf{d}(p,Jx) \leq \mathsf{d}(p,b) + \mathsf{d}(b,c') + \mathsf{d}(c',Jx) \leq \sqrt{d} + (2\delta+B)\csc(\theta/2) + \mu + \delta < S - \sqrt{d}$.

6. Application to separability

The goal of this section is to give applications towards separability of relatively quasiconvex subgroups of a group $G \cong \pi_1 X$ where X is a compact special cube complex.

The following was proven in [7]:

Proposition 6.1. Let X be a special cube complex. Let $Y \to X$ be a local isometry of nonpositively curved cube complexes where Y is compact. Then there is a finite cover $\widehat{X} \to X$ such that $Y \to X$ lifts to an embedding $Y \hookrightarrow \widehat{X}$ and there is a retraction $\widehat{X} \to Y$.

Since $\pi_1 X$ is residually finite, we see that the virtual retract $\pi_1 Y$ is separable or closed in the profinite topology of $\pi_1 X$.

The following was proven by Martinez-Pedroza in [11, Thm 1.1]:

Proposition 6.2. For a relatively quasiconvex subgroup J of G and a maximal parabolic subgroup P of G, there is a constant $C = C(J, P) \ge 0$ with the following property: Let M be a subgroup of P with

- (1) $J \cap P$ is a subgroup of M and
- (2) $d_G(1,g) \geq C$ for any $g \in M J$.

Then the natural homomorphism $J*_{J\cap M}M\to G$ is injective, and its image is a relatively quasiconvex subgroup. Moreover, every parabolic subgroup of $\langle J\cup M\rangle$ is conjugate within $\langle J\cup M\rangle$ to a subgroup of J or a subgroup of M.

The following is a natural consequence of Proposition 6.2.

Corollary 6.3. Let G be hyperbolic relative to $\{P_1, \ldots, P_r\}$. Let J be a relatively quasiconvex subgroup of the group G. Suppose that $J \cap P_i^g$ is separable in P_i^g

whenever it is infinite. Then there is a sequence $\{J_n\}$ of fully quasiconvex subgroups such that $J = \cap_n J_n$.

Proof. There are finitely many representatives of distinct J-conjugates of infinite parabolic intersections $K_s = J \cap P_{i_s}^{g_s}$. For each K_s , the separability hypothesis allows us to choose a finite-index subgroup $M_{sn}^{g_s}$ of $P_{i_s}^{g_s}$ that contains K_s and such that $d_G(1,g) \geq C(K_s, P_{i_s}^{g_s})$ whenever $g \in M_{sn}^{g_s} - K_s$. We then let J_n denote the group that splits as a tree of groups whose central vertex is J and whose edge groups are K_s and whose other vertices are leaves with vertex group $M_{sn}^{g_s}$.

Now suppose that M_{sn} is a descending sequence of subgroups for each s, so $M_{s1}^{g_s} \supseteq M_{s2}^{g_s} \supseteq M_{s3}^{g_s} \supseteq \cdots$, and suppose $\bigcap M_{si}^{g_s} = K_s$. The natural maps $J_n \hookrightarrow G$ factor through $J_1 \supseteq J_2 \supseteq J_3 \cdots$ and then $\bigcap J_i = J$ by the normal form theorem for graphs of groups.

Corollary 6.4. Let X be a compact special cube complex. Suppose $G = \pi_1 X$ is hyperbolic relative to subgroups $\{P_1, \ldots, P_r\}$. Let J be a relatively quasiconvex subgroup of G. Suppose that $J \cap P_i^g$ is separable in P_i^g for each P_i and each $g \in G$. Then J is separable in G.

Proof. By Corollary 6.3, the subgroup J is the intersection of a collection $\{J_n\}$ of full quasiconvex subgroups. By Theorem 1.1, each J_n acts freely and cocompactly on a convex subcomplex $\widetilde{Y} \subset \widetilde{X}$ containing the basepoint of \widetilde{X} . Thus $J_n = \pi_1 Y_n$ where $Y_n = J_n \backslash \widetilde{Y}$. By Proposition 6.1, the subgroup J_n is separable in G. Consequently J is separable since it is the intersection of separable subgroups.

7. When G is hyperbolic relative to free-abelian subgroups

In the motivating case when $\pi_1 X$ is hyperbolic relative to virtually free-abelian subgroups, the picture is simplified and several additional conclusions can be drawn.

7.1. Cosparse actions.

Definition 7.1 (Cosparse actions). An m-dimensional quasiflat $F \subset \widetilde{X}$ is a convex combinatorial subcomplex that is quasi-isometric to \mathbb{E}^m . We say G acts cosparsely on \widetilde{X} if there is a compact space K and finitely many quasiflats F_1, \ldots, F_r such that:

- (1) $\widetilde{X} = GK \cup_i GF_i$.
- (2) Each hyperplane in \widetilde{X} crosses GK.
- (3) $hF_i \cap kF_j \subset GK$ unless i = j and $k^{-1}h \in \text{Stabilizer}(F_i)$.
- (4) Quasiflats are *D*-isolated in the sense that $hF_i \cap kF_j$ has diameter < D unless $hF_i = kF_j$.

A cosparse core for the J-action on \widetilde{X} is a convex subcomplex $\widetilde{Y} \subset \widetilde{X}$ such that J stabilizes and acts cosparsely on \widetilde{Y} .

The following holds by a variation on the proof of Theorem 1.1:

Theorem 7.2. Let G be hyperbolic relative to a collection of virtually free-abelian subgroups. Suppose that G acts properly and cosparsely on a CAT(0) cube complex \widetilde{X} . Let J be a relatively quasiconvex subgroup of G. Let Q be a compact subspace of \widetilde{X} . Then J acts cosparsely on Hull(JQ).

Moreover, J acts cosparsely on the convex CAT(0) subcomplex

$$\widetilde{Y}_{\infty} = \text{Hull}(Jx \cup gP_ix)$$

where P_i^g varies over the maximal parabolic subgroups with $P_i^g \cap J$ infinite.

Sketch. Let E_1, \ldots, E_s represent the finitely many distinct J-orbits of quasiflats having infinite coarse intersection with JQ. Each of these corresponds to an infinite parabolic subgroup of J, and there are finitely many J conjugacy classes of these, since J is relatively quasiconvex.

The key point is that $\operatorname{Hull}(JQ \cup \bigcup_i JE_i) \subset \mathcal{N}_d(JQ \cup \bigcup_i JE_i)$ for some d, and hence they are coarsely equal. This is proven following the method in the proof of Theorem 1.1. We describe the adjustments below.

The $\{gF_i\}$ play the role of the $\{gP_ix\}$ in the proof of Theorem 1.1. The subspace $JQ \cup \bigcup_i JE_i$ is coarsely isolated from other quasiflats in \widetilde{X} . This substitutes for the fullness property of J.

As in the proof of Theorem 1.1, the argument examines a geodesic triangle Δ in terms of two cases: In the first case Δ is δ -thin. In the second case it is δ -thin relative to $F = gP_ix$. In our setting Δ is δ -thin relative to a quasiflat F. In the proof of Theorem 1.1, the second case breaks into two subcases according to whether $P_i^g \cap J$ is finite or infinite and hence of finite-index in P_i^g by fullness. In our setting, these two subcases correspond to whether the coarse intersection of F with JQ is finite or infinite.

Having verified that $\operatorname{Hull}(JQ \cup \bigcup_i JE_i)$ equals a thickening of $(JQ \cup \bigcup_i JE_i)$, the desired $\operatorname{Hull}(JQ)$ is obtained from $\operatorname{Hull}(JQ \cup \bigcup_i JE_i)$ by removing from any jE_i those halfspaces that are disjoint from JQ. This truncation of $\operatorname{Hull}(JQ \cup \bigcup_i JE_i)$ is the desired J-cosparse core.

7.2. **Virtual retracts.** The following was observed independently by Chesebro, DeBlois, and Wilton in [4]:

Theorem 7.3. Suppose $G = \pi_1 X$ is hyperbolic relative to free-abelian subgroups, and X is special and compact. Then every relatively quasiconvex subgroup J of G is a retract of a finite-index subgroup of G.

Proof. For each K_s in the proof of Corollary 6.3, we choose a finite-index subgroup M_{s*} so that K_s is a retract of M_{s*} . We let J_* be the tree of groups centered at J, and we note that J is a retract of J_* . Finally, we note that J_* is a retract of the finite-index subgroup G' of G provided by Proposition 6.1.

7.3. Cocompact convex subspaces. The following was proven in [9] (where there is a more general relatively hyperbolic version as well). The idea is that each quasiflat can be convexly truncated sufficiently far away from the cocompact part GK.

Proposition 7.4 (CAT(0) truncation). Suppose G is hyperbolic relative to virtually free-abelian groups, and G acts properly and cosparsely on a CAT(0) cube complex \widetilde{X} . Then G acts properly and cocompactly on a convex subspace $\widetilde{Y} \subset \widetilde{X}$.

We emphasize that the subspace \widetilde{Y} of Proposition 7.4 might not be a subcomplex, and its convexity is only relative to the CAT(0) metric and not the natural cubical L^1 metric.

Combining Theorem 7.2 with Proposition 7.4 we obtain the following:

Corollary 7.5. Let G be hyperbolic relative to virtually abelian groups. Suppose that G acts properly and cocompactly on the CAT(0) cube complex \widetilde{X} . Let J be a relatively quasiconvex subgroup of G. Then J acts properly and cocompactly on a convex CAT(0) subspace.

Acknowledgements

The authors are very grateful to the referee for many helpful corrections and to Chris Hruska and Eduardo Martinez-Pedroza for helpful comments.

References

- I. Agol, D. D. Long, and A. W. Reid, The Bianchi groups are separable on geometrically finite subgroups, Ann. of Math. (2) 153 (2001), no. 3, 599–621, DOI 10.2307/2661363. MR1836283 (2002e:20099)
- [2] B. H. Bowditch, Relatively hyperbolic groups, Internat. J. Algebra Comput. 22 (2012), no. 3, 1250016, 66, DOI 10.1142/S0218196712500166. MR2922380
- [3] Cornelia Druţu and Mark Sapir, Tree-graded spaces and asymptotic cones of groups, Topology 44 (2005), no. 5, 959–1058, DOI 10.1016/j.top.2005.03.003. With an appendix by Denis Osin and Sapir. MR2153979 (2006d:20078)
- [4] Eric Chesebro, Jason DeBlois, and Henry Wilton, Some virtually special hyperbolic 3-manifold groups, (2009), 1–51.
- [5] B. Farb, Relatively hyperbolic groups, Geom. Funct. Anal. 8 (1998), no. 5, 810–840, DOI 10.1007/s000390050075. MR1650094 (99j:20043)
- [6] Frédéric Haglund, Finite index subgroups of graph products, Geom. Dedicata 135 (2008), 167–209, DOI 10.1007/s10711-008-9270-0. MR2413337 (2009d:20098)
- [7] Frédéric Haglund and Daniel T. Wise, Special cube complexes, Geom. Funct. Anal. 17 (2008),
 no. 5, 1551–1620, DOI 10.1007/s00039-007-0629-4. MR2377497 (2009a:20061)
- [8] G. Christopher Hruska, Relative hyperbolicity and relative quasiconvexity for countable groups, Algebr. Geom. Topol. 10 (2010), no. 3, 1807–1856, DOI 10.2140/agt.2010.10.1807. MR2684983 (2011k:20086)
- [9] G. C. Hruska and Daniel T. Wise, Finiteness properties of cubulated groups, Compos. Math. 150 (2014), no. 3, 453–506, DOI 10.1112/S0010437X13007112. MR3187627
- [10] Tim Hsu and Daniel T. Wise, Cubulating malnormal amalgams, Inventiones Mathematicae, 199 (2015), no. 2, 293-331.
- [11] Eduardo Martínez-Pedroza, Combination of quasiconvex subgroups of relatively hyperbolic groups, Groups Geom. Dyn. 3 (2009), no. 2, 317–342, DOI 10.4171/GGD/59. MR2486802 (2010c:20054)
- [12] Eduardo Martínez-Pedroza and Daniel T. Wise, Relative quasiconvexity using fine hyper-bolic graphs, Algebr. Geom. Topol. 11 (2011), no. 1, 477–501, DOI 10.2140/agt.2011.11.477. MR2783235 (2012c:20117)
- [13] Lee Mosher, Geometry of cubulated 3-manifolds, Topology 34 (1995), no. 4, 789–814, DOI 10.1016/0040-9383(94)00050-6. MR1362788 (97i:57017)
- [14] Michah Sageev, Ends of group pairs and non-positively curved cube complexes, Proc. London Math. Soc. (3) 71 (1995), no. 3, 585–617, DOI 10.1112/plms/s3-71.3.585. MR1347406 (97a:20062)
- [15] Peter Scott, Subgroups of surface groups are almost geometric, J. London Math. Soc. (2) 17 (1978), no. 3, 555–565. MR0494062 (58 #12996)
- [16] Daniel T. Wise, The structure of groups with a quasiconvex hierarchy, Available at http://www.math.mcgill.ca/wise/papers, pp. 1-189. Submitted.

[17] Daniel T. Wise, Subgroup separability of the figure 8 knot group, Topology 45 (2006), no. 3, 421–463, DOI 10.1016/j.top.2005.06.004. MR2218750 (2007a:57010)

Department of Mathematics, Technion, Haifa 32000, Israel

 $E ext{-}mail\ address: }$ sageevm@techunix.technion.ac.il

Department of Mathematics and Statistics, McGill University, Montreal, Quebec, Canada ${\rm H3A~0B9}$

 $E ext{-}mail\ address:$ wise@math.mcgill.ca