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CORES FOR QUASICONVEX ACTIONS

MICHAH SAGEEV AND DANIEL T. WISE

(Communicated by Kevin Whyte)

Abstract. We prove that any full relatively quasiconvex subgroup of a rel-
atively hyperbolic group acting on a CAT(0) cube complex has a convex co-
compact core. We give an application towards separability of quasiconvex
subgroups of the fundamental group of a special cube complex.

1. Introduction

The aim of this paper is the following theorem. We refer to Section 4 for the
definitions related to relative quasiconvexity.

Theorem 1.1. Let X̃ be a CAT(0) cube complex with a proper cocompact action
by G. Suppose that G is hyperbolic relative to subgroups {P1, . . . , Pr}. Let J be a

full relatively quasiconvex subgroup. For each compact subspace Q ⊂ X̃, there exists

a J-cocompact convex subcomplex Ỹ that contains Q.

In the nonrelative case (i.e. when G is a hyperbolic group and J is a quasicon-
vex subgroup), the above theorem was proved independently by Haglund [6], who
obtained the following:

Theorem 1.2. Let G be a group acting on a finite-dimensional locally-finite δ-

hyperbolic CAT(0) cube complex X̃, and suppose that the action is quasiconvex.

There exists a convex subcomplex of X̃ on which G acts cocompactly.

There are several situations where analogues of Theorem 1.1 hold (e.g. cer-
tain small-cancellation groups, certain groups with simplicial nonpositive curva-
ture, Kleinian groups). However, outside some stronger combinatorial or geometric
context, it is not known whether convex cocompact cores always exist for a quasi-
convex subgroup H of a word-hyperbolic group G acting properly and cocompactly
on a CAT(0) space.

The very simplest version of the above core theorems is the widely used 1-
dimensional observation that the covering spaces of graphs corresponding to finitely
generated subgroups have compact cores. The idea is implicit in Scott’s work [15]
which was generalized in [1], and appeared for certain 2-dimensional nonpositively
curved square complexes in [17].
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Figure 1

The fullness condition is necessary, as there are simple examples of infinite-index
quasi-isometrically embedded subgroups J of G = π1X where X is a compact non-
positively curved cube complex, such that no convex proper subcomplex contains
(Jx̃). For instance, when X is the n-torus Tn, for any totally diagonal cyclic sub-
group J ⊂ Zn there is no proper J-invariant convex subcomplex. See Figure 1.
Another example to bear in mind are subgroups like 〈at, bt〉 ⊂ 〈a, b, t | [a, t], [b, t]〉.

We give applications towards separable subgroups of G = π1X when X is com-
pact and G is relatively hyperbolic. Other applications arise in the relatively hy-
perbolic case of the results in [16], and in the cubulation result in [10].

2. CAT(0) cube complex definitions

Definition 2.1 (Nonpositively curved cube complexes and local-isometries). The
standard 0-cube is a point. The standard n-cube is the subspace [−1, 1]n ⊂ Rn.
Its codimension-i faces are the subspaces obtained by restricting i-coordinates to
±1. We regard each codimension-i face as an (n − i)-cube. A cube complex is a
CW complex where closed n-cells are identified with standard n-cubes, and where
the attaching map of each n-cell is a combinatorial map whose restriction to each
codimension-i face is an (n − i)-cell. So, roughly speaking, a cube complex is
obtained from a collection of cubes by identifying some of their faces by isometries.

A flag complex is a simplicial complex with the property that any collection of
n+1 pairwise adjacent vertices spans an n-simplex. A cube complex is nonpositively
curved if the link of each vertex is a flag complex.

A combinatorial map φ : A → B between cube complexes is a local-isometry
if for each a ∈ A0 mapping to b ∈ B0 the corresponding map φ : linkA(a) →
linkB(b) is injective and adjacency preserving. As observed in [13], local isometries
of nonpositively curved cube complexes are π1-injective and lift to combinatorial
isometries between their universal covers.

Definition 2.2 (Hyperplanes, halfspaces, and hulls). A midcube is the subspace
of an n-cube [−1, 1]n obtained by restricting exactly one of its coordinates to 0.

A hyperplane H is a nonempty connected subspace of a CAT(0) cube complex X̃
with the property that its intersection with each cube is either ∅ or consists of
a midcube. The open carrier No(H) of a hyperplane H is the union of all open

cubes intersecting H. A halfspace is a component of X̃ −No(H). Note that each
hyperplane is convex relative to the CAT(0) metric geometry, and each halfspace is
convex with respect to both combinatorial and metric geometry. As shown in [14],
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every midcube of X̃ lies in a unique hyperplane, and each hyperplane separates X̃
into precisely two components.

Let D ⊂ X̃. The hull of D is the intersection of all halfspaces containing D. If

no halfspace contains D, then define Hull(D) = X̃. Note that Hull(D) is a convex

CAT(0) subcomplex of X̃.

3. Proof of Theorem 1.2

Before going into the relative case, we first present a proof of Theorem 1.2. We
do this for the sake of completeness and because the relative version is built on this
proof.

We need the following elementary lemma:

Lemma 3.1. Consider Rn with the standard basis E = {�e1, . . . , �en}. Let θn =
arcsin(1/

√
n). If L is a ray emanating from the origin, then there is a codimension-

1 subspace H spanned by d− 1 vectors in E , such that �(L,H) ≥ θn.

Proof. We show that the angle with one of the hyperplanes is ≥ θn. Consider the
unit vector �v in the direction of L, and let (v1, . . . , vn) be the coordinates of �v
relative to the standard basis. Since Σv2i = 1, there exists i such that |vi| ≥ 1/

√
n.

Let ζ denote the acute angle between �v and ±�ei. Since ζ ≤ arccos(1/
√
n) the angle

between �v and the plane spanned by E − {�ei} is at least arcsin(1/
√
n). �

We will employ the following immediate consequence of Lemma 3.1 (see Fig-
ure 2):

Remark 3.2. Let p be a vertex of an n-cube σ with n ≥ 1. Let γ be a ray in σ
emanating from p. Then there is a midcube H of σ such that γ intersects H at a
point b such that �(γ,H) ≥ θn and d(p, b) ≤

√
n.

The group J acts quasiconvexly on X̃ if for each x ∈ X̃, there exists R such that

each geodesic with endpoints on Jx lies within NR(Jx). Note that when X̃ is δ-
hyperbolic, for any R there exists μ = μ(R) such that any geodesic with endpoints
in NR(Jx) actually lies within Nμ(Jx).

Suppose that J acts quasiconvexly on X̃, and let NR(Jx) be a neighborhood of
an orbit Jx, such that geodesics between points of Jx lie in NR(Jx). We will show
the following:

Proposition 3.3. Let J act quasiconvexly on the δ-hyperbolic, finite-dimensional

CAT(0) cube complex X̃. For each x ∈ X̃ and R > 0 there exists S such that
Hull(NR(Jx)) ⊂ NS(Jx).

In the event that X̃ is locally-finite, J acts cocompactly on NS(Jx). It thus
follows from Proposition 3.3 that J acts cocompactly on the CAT(0) cube complex
Hull(NR(Jx)) and Theorem 1.2 follows.

Proof. Let d = dim(X̃). Let δ be the hyperbolicity constant for X̃. Let θ = θd
be as in Lemma 3.1. Without loss of generality, we assume R is large enough
that NR(Jx) is connected. By the quasiconvexity of Jx, there exists μ so that
any geodesic joining points within NR+1(Jx) lies entirely within Nμ(Jx). Let

S = 2
√
d+ μ+ δ csc(θ/2) + δ.

As each a ∈ Hull(NR(Jx)) lies within distance
√
d of some

0-cube p ∈ Hull(NR(Jx)), it suffices to show that d(p, Jx) ≤ S −
√
d for each
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Figure 2. H cuts through a cube
σ that γ passes through.

Figure 3. If d(p, Jx) > S,
then p and Jx lie in opposite
halfspaces of H.

0-cube p ∈ Hull(NR(Jx)). Suppose this is not the case. We refer the reader to

Figure 3. Let p be a 0-cube of X̃ such that d(p, Jx) ≥ S −
√
d and let γ denote

a geodesic from p to c = jx where |γ| = d(p, Jx). Let σ be a cube containing
an open neighborhood about p in γ. Following Remark 3.2, there exists a hyper-
plane H passing through γ and with �(H, γ) ≥ θ. Let b = H ∩ γ and note that

d(p, b) ≤
√
d.

Suppose NR(Jx) does not lie entirely in a halfspace of H. Then there is a point
q ∈ H ∩ NR+1(Jx). Consider the geodesic from c to q, and consider the δ-thin
triangle Δ(bcq). Let b′, c′, q′ denote points in cq, bq, bc that are pairwise equidistant
from the vertices and within δ of each other. Observe that d(b, q′) ≤ δ csc(θ/2)
since the isosceles triangle Δ(bq′c′) has legs of length ≤ δ csc(θ/2) since its angle is
≥ θ and its base has length ≤ δ. We have

d(p, Jx) ≤ d(p, b) + d(b, q′) + d(q′, b′) + d(b′, Jx) ≤
√
d+ δ csc(θ/2) + δ + μ

and this contradicts that d(p, Jx) > S −
√
d =

√
d+ μ+ δ csc(θ/2) + δ. �

4. Background on relative hyperbolicity and quasiconvexity

Following Bowditch [2], a groupG is hyperbolic relative to subgroups {P1, . . . , Pr}
if it acts cocompactly and with finite edge stabilizers on a graph KG such that the
following holds: Each edge stabilizer is finite; each infinite vertex stabilizer is a
conjugate of some Pi; the graph KG is hyperbolic; and KG is fine in the sense that
each edge of KG lies in finitely many length n cycles for each n. In this setting,
a subgroup J of G is relatively quasiconvex if there is a connected J-cocompact
subgraph KJ ⊂ KG that is quasi-isometrically embedded. We refer the reader to
[8] for a survey of the various equivalent approaches to relative hyperbolicity and
accompanying notions of quasiconvexity, and to [12] for an explanation that the
relative quasiconvexity notion above is equivalent to those surveyed in [8].
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Among the various characteristic features of relatively hyperbolic groups is the
following thin triangle property from [3, Sec 8.1.3].

Theorem 4.1. Let (G,P) be relatively hyperbolic, and let Γ be the Cayley graph of
G with respect to some finite generating set. For each ε there is a constant δ such
that if Δ is an ε–quasigeodesic triangle with sides c0, c1 and c2, then there is either:

(1) a point p such that Nδ/2(p) intersects each side of Δ or
(2) a peripheral coset gP such that Nδ(gP ) intersects each side of Δ.

In the second case, each side ci of Δ has a subpath c′i that lies in Nδ(gP ) such that
(coefficients mod 3) the terminal endpoint of c′i and the initial endpoint of c′i+1 are
mutually within a distance δ.

The following tighter form of Theorem 4.1 is available for an action on a CAT(0)
space:

Proposition 4.2 (Relatively thin triangles). Suppose G is hyperbolic relative to

{P1, . . . , Pr}. Let G act properly and cocompactly on a CAT(0) space X̃. There

exists δ with the following property: Let Δ(abc) be a geodesic triangle in X̃. Either
ab ⊂ Nδ(bc ∪ ca) or there is a translate of an orbit F = gPix where g ∈ G and
1 ≤ i ≤ r such that ab lies in Nδ(F ∪ bc ∪ ca).

Proof. We now use that there is a G-equivariant quasi-isometry between X̃ and Γ.

The geodesic triangle Δ in X̃ corresponds to an ε′-quasigeodesic triangle Δ′ in Γ.
Theorem 4.1 holds for Δ′ with some constant δ′. In case (1), there is a point p
that lies within δ′/2 of each side of Δ′. It follows that there is a point in X that
lies uniformly close to each side of Δ. It then follows from the CAT(0) inequality
that each side lies in a uniform neighborhood of the other two sides. In case (2),
each side of Δ′ contains a subpath that lie within δ′/2 of a coset gP , the endpoints
of these subpaths are pairwise within 2δ′ of each other. The corresponding pairs
of points in Δ are uniformly close, and thus the three tails of Δ are uniformly
thin by the CAT(0) inequality. Furthermore, the corresponding inner subpaths lie
uniformly close to a corresponding orbit Px. We are thus able to choose the desired
δ. �

Let G be hyperbolic relative to {P1, . . . , Pr}. A subgroup J is full if J ∩ P g
i is

either finite or of finite-index in P g
i for each Pi and each g ∈ G.

The following statements hold because, for the relatively hyperbolic group G,
quasigeodesics in its Cayley graph Γ uniformly fellow travel relative to cosets of
peripheral subgroups, and cosets of peripheral subgroups are uniformly coarsely
isolated from each other. This fellow-traveling property is already implicit in Farb’s
original exposition in [5], and has been revisited in [3].

Full relatively quasiconvex subgroups behave like quasiconvex subgroups of hy-
perbolic groups in the following sense:

Lemma 4.3. Let J be a full relatively quasiconvex subgroup of a relatively hyperbolic
group G. There is a number μ such that every geodesic in Γ with endpoints on J
lies in Nμ(J).

Proof. This follows from [8, Cor 8.16] since the peripheral subgroups J ∩ gPg−1 of
H are quasiconvex in the corresponding peripheral subgroups gPg−1 of G. It can
also be deduced from [3, Prop. 8.28]. �
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The following holds because (by the pigeon-hole principle) a long coarse overlap
would imply an infinite coarse overlap.

Lemma 4.4. Let J be a full relatively quasiconvex subgroup of a relatively hyperbolic
group G. There is a number B = B(J, μ, δ) such that diameter

(
Nδ(gPi)∩Nμ(J)

)
≤

B unless [P g
i : P g

i ∩ J ] < ∞.

Remark 4.5 (Quasiadjustment). For the case when the group G acts properly and

cocompactly on a CAT(0) space X̃, Lemma 4.3 and Lemma 4.4 hold with analogous

statements: Firstly, a geodesic in X̃ with endpoints in Jx actually lies in Nμ(Jx).
Secondly, there is a number B such that diameter

(
Nδ(gPix)∩Nμ(Jx)

)
≤ B unless

[P g
i : J ∩ P g

i ] < ∞.
We conclude that, as there are finitely many J-conjugacy classes of infinite par-

abolic intersections J ∩ P g
i , there is a uniform upper bound on any finite-index

[P g
i : J ∩ P g

i ], and hence there exists κ such that whenever diameter
(
Nδ(gPix) ∩

Nμ(Jx)
)
> B we have gPix ⊂ Nκ(Jx).

5. Cores in the relatively hyperbolic case

We now give a proof of Theorem 1.1. The proof proceeds in the exact same
way as the proof of Theorem 1.2 utilizing Proposition 3.3: We choose R such that
Q ⊂ NR(x) where x is the basepoint. We then show that Hull(NR(Jx)) ⊂ NS(Jx)

where S = 2
√
d + μ + δ csc(θ/2) + δ + (B + 2δ) csc(θ/2) + κ. Here d, δ, and θ

play the same role as they did in Proposition 3.3. Namely, d = dim(X̃), and δ

is a hyperbolicity constant for X̃, and θ is the constant provided by Lemma 3.1.
The constants B, μ, and κ are as in Remark 4.5: The constant μ has the property

that any geodesic in X̃ with endpoints in Jx lies in Nμ(Jx); The constant B is
such that diameter

(
Nδ(gPix) ∩ Nμ(Jx)

)
≤ B unless [P g

i : J ∩ P g
i ] < ∞. And the

constant κ has the property that whenever diameter
(
Nδ(gPix)∩Nμ(Jx)

)
> B we

have gPix ⊂ Nκ(Jx).

The initial part of the proof remains the same: Suppose d(p, Jx) > S −
√
d, let

γ be a geodesic from p to c = jx with |γ| = d(p, Jx), let σ be the open cube that
γ initially passes through, and let H be a hyperplane cutting through σ with point
of intersection b = H ∩ γ and angle of intersection �(γ,H) ≥ θ.

The second part of the proof uses relatively thin triangles in place of the ordinary
thin triangle argument given in Proposition 3.3. It is for this reason that the
constant S has been increased as above.

Consider the geodesic triangle Δ(bqc). By Proposition 4.2 either the three sides
are δ-close to each other, or there exists F = gPix such that each side is δ-close to
the union of the other sides with gPix. In the former case, we proceed exactly as
in the proof of Proposition 3.3. The latter case splits into two subcases according
to whether or not P g

i has a finite-index subgroup in J . We refer the reader to
Figure 4.

If [P g
i : P g

i ∩ J ] < ∞, then we let q′ and c′ denote corresponding points on bq
and bc farthest from b such that d(q′, c′) ≤ δ. Observe that d(b, q′) ≤ δ csc(θ/2).
Observe that d(q′, F ) ≤ δ and so d(q′, Jx) ≤ δ + κ. Thus d(p, Jx) ≤ d(p, b) +

d(b, q′) + d(q′, Jx) ≤
√
d+ δ csc(θ/2) + δ + κ < S −

√
d which is impossible.

If [P g
i : P g

i ∩ J ] = ∞, then we let q′′ and c′′ denote the points in qc that are
closest to q and c and have the property that d(q′′, F ) ≤ δ and d(c′′, F ) ≤ δ. Note
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Figure 4

that there are points q′ and c′ on bq and bc with d(q′, q′′) ≤ δ and d(c′, c′′) ≤ δ.
Observe that d(q′′, c′′) ≤ B by Lemma 4.4, since diameter

(
Nδ(Jx) ∩Nμ(F )

)
≤ B.

Thus d(q′, c′) ≤ d(q′, q′′) + d(q′′, c′′) + d(c′′, c) ≤ 2δ +B. Consideration of Δ(bq′c′)
shows that at least one of d(b, q′) and d(b, c′) is bounded above by (2δ+B) csc(θ/2).
Suppose d(b, c′) ≤ (2δ + B) csc(θ/2) and the other possibility is analogous. Then

d(p, Jx) ≤ d(p, b) + d(b, c′) + d(c′, Jx) ≤
√
d+ (2δ +B) csc(θ/2) + μ+ δ < S −

√
d.

6. Application to separability

The goal of this section is to give applications towards separability of relatively
quasiconvex subgroups of a group G ∼= π1X where X is a compact special cube
complex.

The following was proven in [7]:

Proposition 6.1. Let X be a special cube complex. Let Y → X be a local isometry
of nonpositively curved cube complexes where Y is compact. Then there is a finite

cover X̂ → X such that Y → X lifts to an embedding Y ↪→ X̂ and there is a

retraction X̂ → Y .
Since π1X is residually finite, we see that the virtual retract π1Y is separable or

closed in the profinite topology of π1X.

The following was proven by Martinez-Pedroza in [11, Thm 1.1]:

Proposition 6.2. For a relatively quasiconvex subgroup J of G and a maximal
parabolic subgroup P of G, there is a constant C = C(J, P ) ≥ 0 with the following
property: Let M be a subgroup of P with

(1) J ∩ P is a subgroup of M and
(2) dG(1, g) ≥ C for any g ∈ M − J .

Then the natural homomorphism J ∗J∩M M → G is injective, and its image is a
relatively quasiconvex subgroup. Moreover, every parabolic subgroup of 〈J ∪M〉 is
conjugate within 〈J ∪M〉 to a subgroup of J or a subgroup of M .

The following is a natural consequence of Proposition 6.2.

Corollary 6.3. Let G be hyperbolic relative to {P1, . . . , Pr}. Let J be a relatively
quasiconvex subgroup of the group G. Suppose that J ∩ P g

i is separable in P g
i
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whenever it is infinite. Then there is a sequence {Jn} of fully quasiconvex subgroups
such that J = ∩nJn.

Proof. There are finitely many representatives of distinct J-conjugates of infinite
parabolic intersections Ks = J ∩ P gs

is
. For each Ks, the separability hypothesis

allows us to choose a finite-index subgroup Mgs
sn of P gs

is
that contains Ks and such

that dG(1, g) ≥ C(Ks, P
gs
is
) whenever g ∈ Mgs

sn − Ks. We then let Jn denote the
group that splits as a tree of groups whose central vertex is J and whose edge
groups are Ks and whose other vertices are leaves with vertex group Mgs

sn.
Now suppose that Msn is a descending sequence of subgroups for each s, so

Mgs
s1 � Mgs

s2 � Mgs
s3 � · · · , and suppose

⋂
Mgs

si = Ks. The natural maps Jn ↪→ G
factor through J1 � J2 � J3 · · · and then

⋂
Ji = J by the normal form theorem

for graphs of groups. �

Corollary 6.4. Let X be a compact special cube complex. Suppose G = π1X
is hyperbolic relative to subgroups {P1, . . . , Pr}. Let J be a relatively quasiconvex
subgroup of G. Suppose that J ∩P g

i is separable in P g
i for each Pi and each g ∈ G.

Then J is separable in G.

Proof. By Corollary 6.3, the subgroup J is the intersection of a collection {Jn} of
full quasiconvex subgroups. By Theorem 1.1, each Jn acts freely and cocompactly

on a convex subcomplex Ỹ ⊂ X̃ containing the basepoint of X̃. Thus Jn = π1Yn

where Yn = Jn\Ỹ . By Proposition 6.1, the subgroup Jn is separable in G. Conse-
quently J is separable since it is the intersection of separable subgroups. �

7. When G is hyperbolic relative to free-abelian subgroups

In the motivating case when π1X is hyperbolic relative to virtually free-abelian
subgroups, the picture is simplified and several additional conclusions can be drawn.

7.1. Cosparse actions.

Definition 7.1 (Cosparse actions). An m-dimensional quasiflat F ⊂ X̃ is a convex
combinatorial subcomplex that is quasi-isometric to Em. We say G acts cosparsely

on X̃ if there is a compact space K and finitely many quasiflats F1, . . . , Fr such
that:

(1) X̃ = GK ∪i GFi.

(2) Each hyperplane in X̃ crosses GK.
(3) hFi ∩ kFj ⊂ GK unless i = j and k−1h ∈ Stabilizer(Fi).
(4) Quasiflats are D-isolated in the sense that hFi ∩ kFj has diameter < D

unless hFi = kFj .

A cosparse core for the J-action on X̃ is a convex subcomplex Ỹ ⊂ X̃ such that

J stabilizes and acts cosparsely on Ỹ .

The following holds by a variation on the proof of Theorem 1.1:

Theorem 7.2. Let G be hyperbolic relative to a collection of virtually free-abelian
subgroups. Suppose that G acts properly and cosparsely on a CAT(0) cube complex

X̃. Let J be a relatively quasiconvex subgroup of G. Let Q be a compact subspace

of X̃. Then J acts cosparsely on Hull(JQ).
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Moreover, J acts cosparsely on the convex CAT(0) subcomplex

Ỹ∞ = Hull(Jx ∪ gPix)

where P g
i varies over the maximal parabolic subgroups with P g

i ∩ J infinite.

Sketch. Let E1, . . . , Es represent the finitely many distinct J-orbits of quasiflats
having infinite coarse intersection with JQ. Each of these corresponds to an infinite
parabolic subgroup of J , and there are finitely many J conjugacy classes of these,
since J is relatively quasiconvex.

The key point is that Hull(JQ ∪
⋃

i JEi) ⊂ Nd(JQ ∪
⋃

i JEi) for some d, and
hence they are coarsely equal. This is proven following the method in the proof of
Theorem 1.1. We describe the adjustments below.

The {gFi} play the role of the {gPix} in the proof of Theorem 1.1. The subspace

JQ ∪
⋃

i JEi is coarsely isolated from other quasiflats in X̃. This substitutes for
the fullness property of J .

As in the proof of Theorem 1.1, the argument examines a geodesic triangle Δ
in terms of two cases: In the first case Δ is δ-thin. In the second case it is δ-thin
relative to F = gPix. In our setting Δ is δ-thin relative to a quasiflat F . In
the proof of Theorem 1.1, the second case breaks into two subcases according to
whether P g

i ∩ J is finite or infinite and hence of finite-index in P g
i by fullness. In

our setting, these two subcases correspond to whether the coarse intersection of F
with JQ is finite or infinite.

Having verified that Hull(JQ∪
⋃

i JEi) equals a thickening of (JQ∪
⋃

i JEi), the
desired Hull(JQ) is obtained from Hull(JQ ∪

⋃
i JEi) by removing from any jEi

those halfspaces that are disjoint from JQ. This truncation of Hull(JQ ∪
⋃

i JEi)
is the desired J-cosparse core. �

7.2. Virtual retracts. The following was observed independently by Chesebro,
DeBlois, and Wilton in [4]:

Theorem 7.3. Suppose G = π1X is hyperbolic relative to free-abelian subgroups,
and X is special and compact. Then every relatively quasiconvex subgroup J of G
is a retract of a finite-index subgroup of G.

Proof. For each Ks in the proof of Corollary 6.3, we choose a finite-index subgroup
Ms∗ so that Ks is a retract of Ms∗. We let J∗ be the tree of groups centered at J ,
and we note that J is a retract of J∗. Finally, we note that J∗ is a retract of the
finite-index subgroup G′ of G provided by Proposition 6.1. �

7.3. Cocompact convex subspaces. The following was proven in [9] (where
there is a more general relatively hyperbolic version as well). The idea is that
each quasiflat can be convexly truncated sufficiently far away from the cocompact
part GK.

Proposition 7.4 (CAT(0) truncation). Suppose G is hyperbolic relative to virtually
free-abelian groups, and G acts properly and cosparsely on a CAT(0) cube complex

X̃. Then G acts properly and cocompactly on a convex subspace Ỹ ⊂ X̃.

We emphasize that the subspace Ỹ of Proposition 7.4 might not be a subcomplex,
and its convexity is only relative to the CAT(0) metric and not the natural cubical
L1 metric.
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Combining Theorem 7.2 with Proposition 7.4 we obtain the following:

Corollary 7.5. Let G be hyperbolic relative to virtually abelian groups. Suppose

that G acts properly and cocompactly on the CAT(0) cube complex X̃. Let J be a
relatively quasiconvex subgroup of G. Then J acts properly and cocompactly on a
convex CAT(0) subspace.
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