A STRUCTURE THEOREM FOR SUBGROUPS OF GL_n OVER COMPLETE LOCAL NOETHERIAN RINGS WITH LARGE RESIDUAL IMAGE

JAYANTA MANOHARMAYUM

Abstract. Given a complete local Noetherian ring (A, m_A) with finite residue field and a subfield k of A/m_A, we show that every closed subgroup G of $GL_n(A)$ such that $G \mod m_A \supseteq SL_n(k)$ contains a conjugate of $SL_n(W(k)_A)$ under some small restrictions on k. Here $W(k)_A$ is the closed subring of A generated by the Teichmüller lifts of elements of the subfield k.

1. Introduction

Let k be a finite field of characteristic p and let $W(k)$ be its Witt ring. Then, by the structure theorem for complete local rings (see Theorem 29.2 of [4]), every complete local ring with a residue field containing k is naturally a W-algebra. More precisely, given a complete local ring (A, m_A) with maximal ideal m_A and a field homomorphism $\phi: k \to A/m_A$, there is a unique homomorphism $\phi: W(k) \to A$ of local rings which induces ϕ on residue fields. The homomorphism ϕ is completely determined by its action on Teichmüller lifts: if $x \in k$ and $\hat{x} \in W(k)$ is its Teichmüller, then $\phi(\hat{x})$ is the Teichmüller lift of $\phi(x)$.

In this article, we consider an analogous property for subgroups of GL_n over complete local Noetherian rings. From here on, the index n is fixed and assumed to be at least 2. First, a small bit of notation before we state our result formally: Given a complete local ring (A, m_A) and a finite subfield k of the residue field A/m_A, denote by $W(k)_A$ the image of the natural local homomorphism $W(k) \to A$ from the structure theorem. Alternatively, $W(k)_A$ is the smallest closed subring of A containing the Teichmüller lifts of k.

Main Theorem. Let (A, m_A) be a complete local Noetherian ring with maximal ideal m_A and finite residue field A/m_A of characteristic p. Suppose we are given a subfield k of A/m_A and a closed subgroup G of $GL_n(A)$. Assume that:

- The cardinality of k is at least 4. Furthermore, assume that $k \neq \mathbb{F}_5$ if $n = 2$ and that $k \neq \mathbb{F}_4$ if $n = 3$.
- $G \mod m_A \supseteq SL_n(k)$.

Then G contains a conjugate of $SL_n(W(k)_A)$.

For an application, set $W_m := W(k)/p^m$ and $G := SL_n(W_m)$ with k as in the above theorem. Then the above result implies that W_m, with the natural representation $\rho: G \to SL_n(W_m)$, is the universal deformation ring for deformations of...
\(\bar{p} := \rho \mod p : G \to SL_n(k) \) in the category of complete local Noetherian rings with residue field \(k \). (See Remark 1.5.)

We now outline the structure of this article (and introduce some notation along the way). If \(M \) is a module over a commutative ring \(A \), then \(\mathbb{M}(M) \), resp. \(\mathbb{M}_0(M) \), denotes the \(GL_n(A) \)-module of \(n \) by \(n \) matrices over \(M \), resp. \(n \) by \(n \) trace 0 matrices over \(M \), with \(GL_n(A) \) action given by conjugation. The bi-module structure on \(M \) is of course given by \(amb := abm \) for all \(a, b \in A, m \in M \). A typical application of this consideration is when \(B = A/J \) for some ideal \(J \) with \(J^2 = 0 \). Then \(GL_n(B) \) acts on \(\mathbb{M}(J) \) and \(\mathbb{M}_0(J) \), and this action is compatible with the action of \(GL_n(A) \).

Given \(A, B \) and \(J \) as above, we can understand subgroups of \(SL_n(A) \) if we know enough about extensions of \(SL_n(B) \) by \(\mathbb{M}_0(J) \). We give a brief description of the process involved (in terms of group extensions) in section 2. Determining extensions in general can be a complicated problem but, for the proof of the main theorem, we only need to look at extensions of \(SL_n(W(k)/p^m) \) by \(\mathbb{M}_0(k) \). To carry out the argument we need some control over \(H^1(SL_n(W(k)/p^m), \mathbb{M}_0(k)) \) and \(H^2(SL_n(W(k)/p^m), \mathbb{M}_0(k)) \). Some care is needed when \(p \) divides \(n \); the necessary calculations are carried out in section 3.

We remark that the condition on the residual image of \(G \) is necessary for the calculations used here to work. There are results due to Pink (see [9]) characterising closed subgroups of \(SL_2(A) \) when the complete local ring \(A \) has odd residue characteristic. (The proof depends on matrix/Lie algebra identities that only work when \(n = 2 \).) For explicit descriptions of some classes of subgroups of \(SL_2(A) \), see Böckle [1].

A different aspect of the size of closed subgroups of \(GL_n(A) \) with large residual image is studied by Boston in [7]. In a sense our result complements that of Boston: we give a lower bound for the size of closed subgroups assuming the image modulo \(m_A \) is big enough, while Boston’s result there, loc. cit, says such subgroups will contain \(SL_n(A) \) if the image modulo \(m_A^2 \) is big enough.

2. Twisted semi-direct products

Let \(G \) be a finite group. Given an \(\mathbb{F}_p[G] \)-module \(V \) and a normalised 2-cocycle \(x : G \times G \to V \), we can then form the twisted semi-direct product \(V \rtimes_x G \). Here, normalised means that \(x(g, e) = x(e, g) = 0 \) for all \(g \in G \) where we have denoted the identity of \(G \) by \(e \). Recall \(V \rtimes_x G \) has elements \((v, g) \) with \(v \in V, g \in G \) and composition

\[
(v_1, g_1)(v_2, g_2) := (x(g_1, g_2) + v_1 + g_1v_2, g_1g_2),
\]

and that the cohomology class of \(x \) in \(H^2(G, V) \) represents the extension

\[
0 \to V \xrightarrow{(v, e)} V \rtimes_x G \xrightarrow{(v, g) \mapsto g} G \to 1.
\]

The conjugation action of \(V \rtimes_x G \) on \(V \) is the one given by the \(G \) action on \(V \), i.e.,

\[
(u, g)v := (u, g)(v, e)(u, g)^{-1} = (gv, e)
\]

holds for all \(u, v \in V, g \in G \).

We record the following result for use in the next section.

Proposition 2.1. With \(G, V \) and \(x : G \times G \to V \) as above, let \(\phi : V \rtimes_x e \to V \) be the map \((v, e) \mapsto -v \). Then under the transgression map,

\[
\delta : Hom_G(V \rtimes_x e, V) = H^1(V \rtimes_x e, V)^G \to H^2(G, V),
\]

\(\delta(\phi) \) is the class of \(x \).
Proof. Let \(\pi : V \times_x G \to V \) be the map given by \(\pi(v, g) := -v \). Thus \(\pi|_{V \times_x e} = \phi \) and \(\pi(ab) = \pi(a) + a\pi(b)a^{-1} \) whenever \(a, b \) is in \(V \times_x e \). The map \(\partial \pi : G \times G \to V \) given by
\[
\partial \pi(g_1, g_2) := \pi(a_1) + a_1\pi(a_2)a_1^{-1} - \pi(a_1a_2)
\]
where \(a_1, a_2 \in V \times_x G \) lifts \(g_i \) is then well defined and \(\delta(\phi) \) is the class of \(\partial \pi \). (See Proposition 1.6.5 in \([8]\).) Taking \(a_i := (0, g_i) \) we see that \(\partial \pi(g_1, g_2) = x(g_1, g_2) \). \(\square \)

For the remainder of this section, we assume that we are given an \(\mathbb{F}_p[G] \)-module \(M \) of finite cardinality and an \(\mathbb{F}_p[G] \)-submodule \(N \subseteq M \) such that the map

\[
H^2(G, N) \to H^2(G, M)
\]
is injective, and fix a normalised 2-cocycle \(x : G \times G \to N \). As we shall see, assumption 2.2 pretty much determines \(N \times_x G \) as a subgroup of \(M \times_x G \) up to conjugacy.

Suppose we are given a subgroup \(H \) of \(M \times_x G \) extending \(G \) by \(N \), i.e., the sequence

\[
0 \longrightarrow N \longrightarrow H \xrightarrow{(m,g)\mapsto g} G \longrightarrow e
\]
is exact. By assumption 2.2, the extension \(2.3 \) must correspond to \(x \) in \(H^2(G, N) \). Hence there is an isomomorphism \(\theta : N \times_x G \to H \) such that the diagram

\[
\begin{array}{ccc}
0 & \longrightarrow & N \\
\downarrow & & \downarrow \theta \\
0 & \longrightarrow & N \times_x G & \longrightarrow & G & \longrightarrow & e
\end{array}
\]
commutes, and this allows us to define a map \(\xi : G \to M \) so that the relation \(\theta(0, g) = (\xi(g), g) \) holds for all \(g \in G \).

Proposition 2.2. With notation and assumptions as above, we have:

(i) \(\theta(n, g) = (n + \xi(g), g) \) for all \(n \in N, \ g \in G \).

(ii) The map \(\xi : G \to M \) is a 1-cocycle.

(iii) If \(H^1(G, M) = 0 \), then \(\theta \) is conjugation by \((m, e)\) for some \(m \in M \).

Proof. (i) This is a simple computation using the relation \((n, g) = (n, e)(0, g) \).

(ii) Let \(g_1, g_2 \in G \). Using part (i), we get

\[
\theta((0, g_1)(0, g_2)) = \theta(x(g_1, g_2), g_1g_2) = (x(g_1, g_2) + \xi(g_1g_2), g_1g_2), \quad \text{and}
\]
\[
\theta((0, g_1)(0, g_2)) = (\xi(g_1), g_1)(\xi(g_2), g_2) = (x(g_1, g_2) + \xi(g_1) + g_1\xi(g_2), g_1g_2).
\]

Therefore we must have \(\xi(g_1g_2) = \xi(g_1) + g_1\xi(g_2) \).

(iii) If \(H^1(G, M) = 0 \), then there exists an \(m \in M \) such that \(\xi(g) = gm - m \) for all \(g \in G \). One then uses part (i) to check that

\[
(m, e)^{-1}(n, g)(m, e) = (n + gm - m, g) = \theta(n, g).
\]

We now give—with a view to motivating the calculations in the next section—a sketch of how we use the above proposition to prove a particular case of the main theorem. Suppose that we have an Artinian local ring \((A, m_A)\) with residue field \(k \), and suppose that we are given a subgroup \(G \leq SL_n(A) \) with \(\text{mod } m_A = SL_n(k) \). We’d like to know if a conjugate of \(G \) contains \(SL_n(W(k)_A) \).

Suppose that \(J \) is an ideal of \(A \) killed by \(m_A \). To simplify the discussion further, let’s assume that the quotient \(A/J \) is \(W_m := W(k)/p^m \), that \(W(k)_A = W(k)/p^{m+1} \), and that \(\text{mod } J = SL_n(W_m) \). The assumption that \(W(k)_A = W(k)/p^{m+1} \) gives us a choice \(k \subseteq J \), and we can set up an identification of
$SL_n(A)$ with a twisted semi-direct product $M_0(J) \rtimes_x SL_n(W_m)$ so that the subgroup $SL_n(W(k)_A)$ gets identified with $M_0(k) \rtimes_x SL_n(W_m)$. In order to apply Proposition 2.2 and conclude that G is, up to conjugation, $M \rtimes_x SL_n(W_m)$ for some $F_p[SL_n(W_m)]$-submodule M of $M_0(J)$, we need to verify that

- Assumption 2.2 holds for $F_p[SL_n(W_m)]$-submodules of $M_0(J)$ (Theorem 3.1);
- $H^1(SL_n(W_m), M_0(J)) = (0)$. This is a consequence of known results when $m = 1$ (Theorem 3.2 and Proposition 3.6) in “good” cases. Extra arguments (cf, for instance, Proposition 3.8) are needed when p divides n.

We can then conclude that a conjugate of G contains $SL_n(W(k)_A)$ provided $M_0(k) \subset M$. This is derived from the injectivity of H^2 (in particular Corollary 3.13; see claim 4.3 in section 4.

3. COHOMOLOGY OF $SL_n(W/p^m)$

We fix, as usual, a finite field k of characteristic p and set $W_m := W/p^m$ where $W := W(k)$ is the Witt ring of k. From here on we assume $n \geq 2$. Our aim is to verify that assumption 2.2 holds. More precisely, we have the following:

Theorem 3.1. Let k be a finite field of characteristic p and cardinality at least 4. Suppose $N \subseteq M$ are $F_p[SL_n(W_m)]$-submodules of $M_0(k)^r$ for some integer $r \geq 1$. Then the induced map on second cohomology $H^2(SL_n(W_m), N) \rightarrow H^2(SL_n(W_m), M)$ is injective.

The proof of Theorem 3.1 relies on knowledge of the first cohomology of $SL_n(W_m)$ with coefficients in $M_0(k)$. There are a couple more $SL_n(W_m)$ modules to consider when p divides n, and we introduce these: Write S for the subspace of scalar matrices in $M_0(k)$. Thus $S = (0)$ unless p divides n in which case $S = \{\lambda I : \lambda \in k\}$. If $p | n$ we define $V := M_0(k)/S$.

The first cohomology of $SL_n(W_m)$ with coefficients in $M_0(k)$ or V is well understood when $m = 1$, and we refer to Cline, Parshall and Scott [3, Table 4.5] for the following result. (For results on $H^2(SL_n(k), M_0(k))$ see [2, 14].)

Theorem 3.2. Assume that the cardinality of k is at least 4.

- Suppose $(n, p) = 1$. Then $H^1(SL_n(k), M_0(k))$ is always 0 except for $H^1(SL_2(F_5), M_0(k))$ which is a 1-dimensional k-vector space.
- Suppose $p | n$. Then $H^1(SL_n(k), V)$ is a 1-dimensional k-vector space.

Throughout this section, we will denote by Γ the kernel of the mod p^m-reduction map $SL_n(W_{m+1}) \rightarrow SL_n(W_m)$. We have suppressed the dependence on m in our notation; this shouldn’t create any great inconvenience. If $M \in M_0(W)$ is a trace 0, $n \times n$-matrix with coefficients in W, then $I + p^{m+1}M \mod p^{m+1}$ is in Γ, and this sets up a natural identification of $M_0(k)$ and Γ compatible with $SL_n(W_m)$-action. The extension of Theorem 3.2 to the group $SL_n(W_m)$ for arbitrary m, carried out in subsections 3.2 and 3.3, then relies on the injectivity of transgression maps from $H^1(\Gamma, -)^{SL_n(W_m)}$ to $H^2(SL_n(W_m), -)$.

We end—before we go into the main computations of this section—by reviewing the structure of $M_0(k)$, and therefore of Γ, as an $F_p[SL_n(k)]$-module. For $1 \leq i, j \leq n$, e_{ij} denotes the matrix unit which is 0 at all places except at the (i, j)-th place where it is 1.
Lemma 3.3. Assume that $k \neq \mathbb{F}_2$ if $n = 2$.

(i) If X is an $F_p[SL_n(k)]$-submodule of $M_0(k)$, then either X is a subspace of S, or $X = M_0(k)$. Thus $M_0(k)/S$ is a simple $F_p[SL_n(k)]$-module, and the sequence

$$0 \to S \to M_0(k) \to V \to 0$$

is non-split when $p|n$.

(ii) If $\phi : M_0(k) \to M_0(k)$ is a homomorphism of $F_p[SL_n(k)]$-modules, then there exists a $\lambda \in k$ such that $\phi(A) = \lambda A$ for all $A \in M_0(k)$.

(iii) Suppose $p|n$ and $\phi : M_0(k) \to V$ is a homomorphism of $F_p[SL_n(k)]$-modules. Then $\phi(S) = (0)$ and the induced map $\phi : V \to V$ is multiplication by a scalar in k.

Proof. Let U be the subgroup $SL_n(k)$ consisting of upper triangular matrices with ones on the diagonal. As an $F_p[U]$-module the semi-simplification of $M_0(k)$ is a direct sum of copies of F_p and $M_0(k)^U = S + ke_{1n}$. Therefore if the $F_p[SL_n(k)]$-submodule X is not a subspace of S, then X contains a matrix $aI + be_{1n}$ with $b \neq 0$.

Suppose first that $a = 0$. By considering the action of diagonal matrices, we see that X must in fact contain the full k-span of e_{1n}. Conjugation by $SL_n(k)$ then implies that $X \supseteq ke_{ij}$ whenever $i \neq j$. Now, under the action of $SL_n(k)$, we can conjugate $e_{ij} + e_{ji}$ with $i \neq j$ to $e_{ii} - e_{jj}$ when p is odd and to $e_{ii} - e_{jj} + e_{ij}$ when $p = 2$. In any case, we can conclude that $X \supseteq k(e_{ii} - e_{jj})$ whenever $i \neq j$. It follows that X must be the whole space $M_0(k)$.

Suppose now $a \neq 0$. Thus $S \neq 0$ and p divides n. When $n \geq 3$ the relation

$$(I + e_{21})(aI + be_{1n})(I - e_{21}) = aI + be_{1n} + be_{2n}$$

implies be_{2n} and, consequently, be_{1n} are in X, and so $X = M_0(k)$. When $n = 2$—so $p = 2$ and k has at least 4 elements—we can find a $0 \neq \lambda \in k$ with $\lambda^2 \neq 1$. Conjugating by $F_p[SL_n(k)]$, we see that $aI + b\lambda^2 e_{1n} \in X$. This gives $0 \neq b(\lambda^2 - 1)e_{1n} \in X$ and so $X = M_0(k)$.

Now for part (ii). Since ϕ commutes with the action of $SL_n(k)$, the subspaces $M_0(k)^{SL_n(k)}$ and $M_0(k)^U$ are invariant under ϕ. When p divides n the first of these gives $\phi S \subseteq S$; if p does not divide n, then $M_0(k)^U = ke_{1n}$ and so we must have $\phi(e_{1n}) = \lambda e_{1n}$ for some $\lambda \in k$. In any case, we can find a $\lambda \in k$ such that the $F_p[SL_n(k)]$-module homomorphism $\phi - [\lambda] : M_0(k) \to M_0(k)$ given by $A \to \phi(A) - \lambda A$ has non-trivial kernel. We can then conclude, by part (i) and a simple dimension count, that the kernel has to be the whole space $M_0(k)$, and therefore ϕ must be multiplication by λ.

For part (iii), that $S \subseteq \ker \phi$ follows from part (i). The second part is proved along the same lines as the proof of part (ii) by considering $\phi(e_{1n})$. \square

3.1. **Determination of $H^1(SL_n(W_m), k)$**. Let k have cardinality p^d. Our aim is to show that $H^1(SL_n(W_m), k)$ vanishes, subject to some mild restrictions on k. We do this inductively using inflation–restriction after dealing with the base case $m = 1$ by adapting Quillen’s result in the general linear group case (see section 11 of [10]).

To start off we impose no restrictions other than $n \geq 2$. Denote by T the subgroup of diagonal matrices in $SL_n(k)$ and write (t_1, t_\ldots, t_n) for the diagonal
matrix with \((i, i)\)-th entry \(t_i\). The image of the homomorphism \(T \to (k^\times)^{n-1}\) given by
\[
(t_1, \ldots, t_n) \mapsto (t_2/t_1, \ldots, t_n/t_{n-1})
\]
has index \(h := \text{hcf}(n, p^d - 1)\) in \((k^\times)^{n-1}\). Taking this into account and following the remark at the end of section 11 of [10], the proof covering the general linear group case only needs a small modification at one place\(^1\) to give the following:

Theorem 3.4. Let \(k\) be a finite field of characteristic \(p\) and cardinality \(p^d\). Then \(H^i(SL_n(k), \mathbb{F}_p) = 0\) for \(0 < i < d(p - 1)/h\) where \(h := \text{hcf}(n, p^d - 1)\).

For a fixed \(n\), Theorem 3.4 implies the vanishing of \(H^1(SL_n(k), k)\) and \(H^2(SL_n(k), k)\) for fields with sufficiently large cardinality. To get a stronger result for \(H^1\) and \(H^2\) covering fields with small cardinality, we will need to carry out a slightly more detailed analysis.

In order to show \(H^*(SL_n(k), \mathbb{F}_p) = 0\) it is enough to check that \(H^*(U, \mathbb{F}_p)^T = 0\) where \(U\) is the subgroup of upper triangular matrices with ones on the diagonal. Fix an algebraic closure \(\overline{\mathbb{F}}_p\) of \(\mathbb{F}_p\) containing \(k\). Since \(T\) is an abelian group of order prime to \(p\), the \(\overline{\mathbb{F}}_p[T]\)-module \(H^*(U, \mathbb{F}_p) \otimes_{\overline{\mathbb{F}}_p} \overline{\mathbb{F}}_p\) is isomorphic to a direct sum of characters; we will then have to check that none of these can be the trivial character.

Let \(\Delta^+\) be the set of characters \(a_{ij} : T \to k^\times\) given by \(a_{ij}(t_1, \ldots, t_n) := t_i/t_j\) where \(1 \leq i < j \leq n\). The analysis in [10] section 11 shows that the Poincaré series of \(H^*(U)\) as a representation of \(T\), denoted by \(P.S.(H^*(U))\), satisfies the bound

\[
P.S.(H^*(U)) := \sum_{i \geq 0} \text{cl}(H^i(U, \mathbb{F}_p) \otimes_{\overline{\mathbb{F}}_p} \overline{\mathbb{F}}_p)z^i \ll \prod_{a \in \Delta^+} \prod_{b=0}^{d-1} \frac{1 + a^{-p^b}z}{1 - a^{-p^b}z^2}
\]
in \(R_{\overline{\mathbb{F}}_p}(T)[[z]]\). Here \(R_{\overline{\mathbb{F}}_p}(T)\) is the Grothendieck group for representations of \(T\) over \(\overline{\mathbb{F}}_p\), and \(\text{cl}(V)\) is the class of a \(\overline{\mathbb{F}}_p[T]\)-module \(V\) in \(R_{\overline{\mathbb{F}}_p}(T)\); given \(\overline{\mathbb{F}}_p[T]\)-modules \(V_0, V_1, V_2, \ldots\) and \(W_0, W_1, W_2, \ldots\), the bound

\[
\sum_{i \geq 0} \text{cl}(W_i)z^i \ll \sum_{i \geq 0} \text{cl}(V_i)z^i
\]
in \(R_{\overline{\mathbb{F}}_p}(T)[[z]]\) expresses the property that \(W_i\) is isomorphic to an \(\overline{\mathbb{F}}_p[T]\)-submodule of \(V_i\) for every integer \(i \geq 0\). Thus the right hand side of (3.2) tells us which characters might occur in the decomposition of the \(\overline{\mathbb{F}}_p[T]\)-module \(H^*(U, \mathbb{F}_p) \otimes_{\overline{\mathbb{F}}_p} \overline{\mathbb{F}}_p\).

Note that our choice of a positive root system \(\Delta^+\) is different from the one in [10]; the choice made there leads to a sign discrepancy in the upper bound (3.2) (but doesn’t affect any of the results derived from it). If we use the ordering on \(\Delta^+\) given by \((i', j') \leq (i, j)\) if either \(i' < i\), or \(i' = i\) and \(j \leq j'\), then with notation as in [10] we have a central extension

\[
0 \to k_a \to U/U_a \to U/U_a' \to 1,
\]
with \(T\)-action and the argument in [10] carries through verbatim.

\(^1\) The congruence just before Lemma 16 changes to a congruence modulo \((p^d - 1)/h\).
It is then straightforward to work out the coefficients of \(z \) and \(z^2 \) on the right hand side of (3.2) and we can conclude the following: If \(\chi : T \to \mathbb{F}_p^\times \) is a character occurring in \(\text{cl}(H^1(U, \mathbb{F}_p) \otimes_{\mathbb{F}_p} \mathbb{F}_p), i = 1, 2 \), then \(\chi^{-1} \) is either

- a Galois conjugate of a positive root, i.e., \(\chi^{-1} = a^{p^b} \) for some positive root \(a \in \Delta \) and integer \(0 \leq b < d \), or
- a product \(\alpha \alpha' \) where \(\alpha, \alpha' \) are Galois conjugates of positive roots and \(\alpha \neq \alpha' \). (This case happens only when \(i = 2 \).)

Thus, taking Galois conjugates as needed, we need to determine when \(a_{ij} \) or \(a_{ij}p_{kl}^{pb} \) is the trivial character, where \(a_{ij}, a_{kl} \in \Delta^+ \) and \(0 < b < d \) in the case \((i, j) = (k, l)\). The first case is immediate: \(a_{ij} \) is never the trivial character except when \(k = \mathbb{F}_2 \), or \(n = 2 \) and \(k = \mathbb{F}_3 \).

Now for the second case. We now have integers \(1 \leq i < j \leq n \), \(1 \leq k < l \leq n \), \(0 \leq b < d \) with \(b \neq 0 \) if \((i, j) = (k, l)\) such that the following relation holds:

\[
(3.3) \quad \frac{t_i}{t_j} (\frac{t_k}{t_l})^{p^b} = 1 \quad \text{for all } (t_1, \ldots, t_n) \in T.
\]

We will determine for which fields the above relation holds by specialising suitably. We exclude \(k = \mathbb{F}_2 \) in what follows.

Firstly, let’s consider the case when \(i, j, k, l \) are distinct. Thus \(n \geq 4 \). We can specialise (3.3) to \(t_k = t_l = 1 \) and \(t_i = t_j^{-1} = t \) for \(t \in k^\times \). We then get \(t^2 = 1 \) for all \(t \in k^\times \)—which implies \(k \) can only be \(\mathbb{F}_3 \). Furthermore, if \(n \geq 5 \) we have an even better specialisation: we can choose \(t_j = t_k = t_l = 1 \) and \(t_i \) freely, and conclude (3.3) never holds.

Next, suppose the cardinality \(\{i, j, k, l\} \) is 3. If we suppose \(\{i, j, k, l\} = \{i, k, l\} \) (the case \(\{i, j, k, l\} = \{j, k, l\} \) is similar), then specialisation to \(t_j = t_k = t_l = t^{-1} \) and \(t_i = 2^3 \) implies that \(t^3 = 1 \) for all \(t \in k^\times \), i.e., \(k \) is a subfield of \(\mathbb{F}_4 \). If in addition \(n \geq 4 \) we can take \(t_k = t_l = 1 \) and then there is a free choice for either \(t_i \), so (3.3) cannot hold.

Finally consider the case when the cardinality of \(\{i, j, k, l\} \) is 2. We must then have \(i = k \), \(j = l \) and \(1 \leq b < d \). Taking \(t_i = t_j^{-1} \), we get \(t^{2(1+p^b)} = 1 \) for all \(t \in k^\times \), and so \(2(1+p^b) = p^d - 1 \). This only works when \(k = \mathbb{F}_9 \). Moreover, when \(n \geq 3 \), we can set \(t_j = 1 \) and then the relation (3.3) implies \(t^{p^b+1} = 1 \) for all \(t \in k^\times \). So \(p^b + 1 = p^d - 1 \) and \(k \) is necessarily \(\mathbb{F}_4 \). Therefore in the case \((i, j) = (k, l)\) the relation (3.3) holds only when \(n = 2 \) and \(k = \mathbb{F}_9 \).

We have thus proved the first part of the following:

Theorem 3.5. Let \(k \neq \mathbb{F}_2 \) be a finite field of characteristic \(p \) and let \(n \geq 2 \) be an integer. Further, assume that

- if \(n = 4 \), then \(k \) is not \(\mathbb{F}_3 \);
- if \(n = 3 \), then \(k \neq \mathbb{F}_4 \);
- if \(n = 2 \), then \(k \) is not \(\mathbb{F}_3 \) or \(\mathbb{F}_9 \).

Then \(H^1(SL_n(k), \mathbb{F}_p) \) and \(H^2(SL_n(k), \mathbb{F}_p) \) are both trivial. Furthermore, under the same assumptions on \(k \), we have \(H^1(SL_n(W_m), k) = (0) \) for all integers \(m \geq 1 \).
The second part is proved by induction using inflation-restriction and the vanishing of $H^1(SL_n(k), k)$ from the first part. With $\Gamma = \ker(SL_n(W_{m+1}) \to SL_n(W_m))$ we have

$$0 \to H^1(SL_n(W_m), k) \to H^1(SL_n(W_{m+1}), k) \to H^1(\Gamma, k)^{SL_n(W_m)}.$$

Now the natural identification of $\mathbb{M}_0(k)$ with Γ compatible with $SL_n(W_m)$-actions sets up an isomorphism between $H^1(\Gamma, k)^{SL_n(W_m)}$ and $\text{Hom}_{\mathbb{F}_p}[SL_n(k)](\mathbb{M}_0(k), k)$. The latter vector space is easily seen to be (0) by a dimension count using Lemma 3.3 and the theorem follows.

3.2. Determination of $H^1(SL_n(W_m), \mathbb{M}_0(k))$. The result here is that all cohomology classes come from $H^1(SL_n(k), \mathbb{M}_0(k))$. More precisely:

Proposition 3.6. Suppose that k has cardinality at least 4 and that $k \neq \mathbb{F}_4$ when $n = 3$. The inflation map $H^1(SL_n(W_m), \mathbb{M}_0(k)) \to H^1(SL_n(W_{m+1}), \mathbb{M}_0(k))$ is then an isomorphism for all integers $m \geq 1$.

By the inflation–restriction exact sequence, the above proposition follows if we can show that the transgression map

$$\delta : H^1(\Gamma, \mathbb{M}_0(k))^{SL_n(W_m)} \to H^2(SL_n(W_m), \mathbb{M}_0(k))$$

is injective. Since $H^1(\Gamma, \mathbb{M}_0(k))^{SL_n(W_m)}$ has dimension 1 as a k-vector space by Lemma 3.3, we just need to check that δ is not the zero map.

Recall that we have a natural identification of Γ with $\mathbb{M}_0(k)$ given by $\phi(I + p^m A) := A \mod p$. Hence by Proposition 2.1 we see that $\delta(-\phi)$ must be the class of the extension

$$I \to \Gamma \to SL_n(W_{m+1}) \to SL_n(W_m) \to I.$$

Therefore the required conclusion follows if the above extension is non-split, and we address this below.

Proposition 3.7. Assume that k has cardinality at least 4 and that if $n = 3$, then $k \neq \mathbb{F}_4$. Then the extension

$$(3.4) \quad I \to \Gamma \to SL_n(W_{m+1}) \to SL_n(W_m) \to I$$

does not split for any integer $m \geq 1$.

Proof. This should be well known, but it is hard to find a reference in the form we need. We therefore sketch a proof for completeness. The case when $n = 2$ and $p \geq 5$ is discussed in [13]. For the non-splitting of the above sequence when $k = \mathbb{F}_p$ see [11]; for non-splitting in the GL_n case see [12].

If R is a commutative ring and $r \in R$, then we write $N(r)$ for the elementary nilpotent $n \times n$ matrix in $M(R)$ with zeroes in all places except at the $(1,2)$-th entry where it is r. Note that $N(r)^2 = 0$ and that

$$(I + N(r))^k = I + kN(r) = I + krN(1)$$

for every integer k.

Suppose there is a homomorphism $\theta : SL_n(W_m) \to SL_n(W_{m+1})$ which splits the above exact sequence [3.4]. We fix a section $s : W_m \to W_{m+1}$ that sends Teichmüller lifts to Teichmüller lifts. For instance, if we think in terms of Witt vectors of finite length then we can take s to be the map $(a_1, \ldots, a_m) \to (a_1, \ldots, a_m, 0)$. Finally, take the map $A : W_m \to \mathbb{M}_0(k)$ so that the relation

$$\theta(I + N(x)) = (I + p^m A(x))(I + N(s(x)))$$
holds for all \(x \in W_m \) (and we have abused notation and identified \(p^mW_{m+1} \) with \(p^mk \)).

Now \(\theta(I + N(x)) \) has order dividing \(p^m \) in \(SL_n(W/p^{m+1}) \) for any \(x \in W_m \).

Writing \(N \) and \(A \) in lieu of \(N(s(x)) \) and \(A(x) \), we have

\[
(I + N)^k(I + p^m A)(I + N)^{-k} = I + p^m(A + kNA - kAN - k^2NAN)
\]

for any integer \(k \), and a small calculation yields

\[
\theta(I + N(x))p^m = (I + \alpha p^m(NA - AN) - \beta p^mNAN)(I + p^mN).
\]

where \(\alpha = p^m(p^m - 1)/2 \) and \(\beta = p^m(p^m - 1)(2p^m - 1)/6 \). Hence if either \(p \geq 5 \), or \(p \) divides 6 and \(m \geq 2 \), then \(\theta(I + N(1)) \) cannot have order \(p^m \)—a contradiction.

From here on \(p \) divides 6 and \(m = 1 \); so \(\theta : SL_n(k) \to SL_n(W/p^2) \) and \(s(x) = \hat{x} \).

Applying \(\theta \) to \((I + N(x))(I + N(y)) = I + N(x + y) \) and multiplying by \(N(1) \) on the left and right then gives \(N(1)A(x)N(1) + N(1)A(y)N(1) = N(1)A(x + y)N(1) \), and therefore,

\[
a_{21}(x + y) = a_{21}(x) + a_{21}(y)
\]

for all \(x, y \in k \).

Suppose now \(p = 3 \). The expression \(3.5 \) for \(\theta(I + N(x))^p \) then becomes

\[
I + pxN(1) + px^2N(1)A(x)N(1) = I.
\]

Comparing the (1, 2)-th entries on both sides we get \(x^2a_{21}(x) + x = 0 \) for all \(x \in k \). Thus for \(x \neq 0 \) we have \(a_{21}(x) = -x^{-1} \). This contradicts the linearity of \(a_{21} \) if \(k \neq \mathbb{F}_3 \).

Before we consider the case \(p = 2 \) specifically, we make some relevant simplifications by considering the action of \(\Gamma \), the subgroup of diagonal matrices in \(SL_n(k) \). For \(t = (t_1, \ldots, t_n) \in SL_n(k) \) we define \(\hat{t} := (\hat{t}_1, \ldots, \hat{t}_n) \in SL_n(W/p^2) \). We must then have \(\theta(t) = B(t)\hat{t} \) where \(B : \Gamma \to \Gamma \) is a 1-cocycle. Since \(H^1(\Gamma, \Gamma) = 0 \) we can assume, after conjugation by a matrix in \(\Gamma \) if necessary, that \(\theta(t) = \hat{t} \). The homomorphism condition applied to \(\theta(t(I + N(x))t^{-1}) \) then gives

\[
(I + pA(t_1x/t_2))(I + (t_1x/t_2)N(1)) = (I + ptA(x)t^{-1})(I + \hat{t}xN(1)\hat{t}^{-1})
\]

where \(t = (t_1, \ldots, t_n) \). Hence \(A(t_1x/t_2) = tA(x)t^{-1} \) for all \(t \in T \) and \(x \in k \). By considering specialisations \(t_1 = t_2 = 1 \) for \(n \geq 4 \) and \(t = (\lambda, \lambda, \lambda^{-2}) \) when \(n = 3 \), we conclude that \(a_{ij}(x) = 0 \) if \(i \neq j \) and \(i \geq 3 \) or \(j \geq 3 \) provided \(k \) has cardinality at least 4 and \(k \neq \mathbb{F}_4 \) when \(n = 3 \).

We now go back to assuming \(p = 2 \) and \(m = 1 \). Relation \(3.5 \) then becomes

\[
I + px(N(1)A(x) + A(x)N(1)) + px^2N(1)A(x)N(1) + pxN(1) = I,
\]

and we get \(a_{21}(x) = 0 \) and \(a_{11}(x) + a_{22}(x) = 1 \) whenever \(x \neq 0 \). Hence if \(k \) has cardinality at least 4 and \(k \neq \mathbb{F}_4 \) when \(n = 3 \), then \(\theta(I + N(x)) \) is an upper-triangular matrix and so \(a_{ii}(x + y) = a_{ii}(x) + a_{ii}(y) \) for \(i = 1, \ldots, n \) and \(x, y \in k \).

Since \(k \) has at least 4 elements we can choose \(x, y \in k \) with \(xy(x+y) \neq 0 \), and this gives

\[
1 = a_{11}(x + y) + a_{22}(x + y) = (a_{11}(x) + a_{11}(y)) + (a_{22}(x) + a_{22}(y)) = 1 + 1
\]

—a contradiction.
3.3. H^1 when n and p are not coprime. Suppose now that p divides n. Thus $\mathbb{M}_0(k)$ is reducible and we have the exact sequence

$$0 \to S \xrightarrow{i} \mathbb{M}_0(k) \xrightarrow{\pi} V \to 0.$$

We then have the following analogue of Proposition 3.6.

Proposition 3.8. Assume that p divides n and that the cardinality of k is at least 4. The inflation map $H^1(SL_n(W_m), V) \to H^1(SL_n(W_{m+1}), V)$ is then an isomorphism for all integers $m \geq 1$.

Denote by Z the subgroup of Γ consisting of the scalar matrices $(1+p^m\lambda)I$. We then have an exact sequence

$$I \to \Gamma/Z \to SL_n(W_{m+1})/Z \xrightarrow{\mod p^m} SL_n(W_m) \to I.$$

Under the natural identification $\phi : \Gamma \to \mathbb{M}_0(k)$ given by $\phi(I+p^m A) := A \mod p$ of Γ with $\mathbb{M}_0(k)$, the groups Z, resp. Γ/Z, correspond to S, resp. V. If we set $\psi : \Gamma/Z \to V$ to be the map induced by $\phi \mod S$, then Proposition 2.1 shows that $\delta = (\psi^*)^{-1}$ is the cohomology class of the extension 3.7 under the transgression map

$$\delta : H^1(\Gamma/Z, V)^{SL_n(W_m)} \to H^2(\Gamma, V)^{SL_n(W_m)}.$$

Now, by Lemma 3.3, the map

$$H^1(\Gamma/Z, V)^{SL_n(W_m)} \to H^1(\Gamma, V)^{SL_n(W_m)}$$

is an isomorphism of 1-dimensional k-vector spaces. Thus the conclusion of Proposition 3.8 holds exactly when the extension 3.7 is non-split.

In many cases the required non-splitting follows from a simple modification of the proof of Proposition 3.7. More precisely, we have the following:

Lemma 3.9. Suppose $p|n$, and assume that either $p \geq 5$ or $m \geq 2$. Then the extension

$$I \to \Gamma/Z \to SL_n(W_{m+1})/Z \to SL_n(W_m) \to I$$

does not split.

Proof. We give a sketch: Suppose $\theta : SL_n(W_m) \to SL_n(W_{m+1})$ is a section. Then, with $N(1)$ the elementary nilpotent matrix described in the proof of Proposition 3.7 we have $\theta(I+N(1)) = (I+p^m A)(I+N(1))$ modulo Z for some $A \in \mathbb{M}_0(k)$. Because elements in Z are central, relation 3.5 holds modulo Z and the lemma easily follows. \qed

We now deal with the case $m = 1$ and complete the proof of Proposition 3.8. Consider the commutative diagram

$$\begin{array}{cccccc}
H^1(\Gamma, \mathbb{M}_0(k))^{SL_n(W_m)} & \xrightarrow{\delta} & H^2(SL_n(W_m), \mathbb{M}_0(k)) \\
\downarrow \pi^* & & \downarrow \pi^* \\
H^1(\Gamma, V)^{SL_n(W_m)} & \xrightarrow{\delta} & H^2(SL_n(W_m), V)
\end{array}$$

where π^* is the map induced by the projection $\pi : \mathbb{M}_0(k) \to V$. Now, the map π^* on the left hand side of the square is an isomorphism by Lemma 3.3. Since the cardinality of k is at least 4 (and remembering that we are also assuming $p|n$), the top row of the square 3.8 is an injection by Proposition 3.6. Furthermore, Theorem 4.5 implies $H^2(SL_n(W_m), k) = (0)$ and therefore the map π^* on the right hand
side of the square is an injection. Hence the bottom row of the square \(3.8\) is also an injection and we can conclude the proposition.

\textbf{Remark 3.10.} As we saw in course of the proof, Proposition \(3.8\) implies the following extension of Lemma \(3.9\):

\textbf{Corollary 3.11.} Assume that \(p\) divides \(n\) and \(k\) has cardinality at least 4. Then the sequence

\[I \to \Gamma/Z \to SL_n(W_{m+1})/Z \to SL_n(W_m) \to I \]

does not split for any integer \(m \geq 1\).

We end this subsection with a description of the relations between the cohomology groups with coefficients \(\mathbb{M}_0(k), S\) and \(V\):

\textbf{Proposition 3.12.} Suppose that \(p\) divides \(n\) and that \(k\) has at least 4 elements. Then, with \(i\) and \(\pi\) as in the exact sequence \(3.6\) the map \(H^1(SL_n(W_m), \mathbb{M}_0(k)) \xrightarrow{\pi^*} H^1(SL_n(W_m), V)\) is an isomorphism and

\[0 \to H^2(SL_n(W_m), S) \xrightarrow{i^*} H^2(SL_n(W_m), \mathbb{M}_0(k)) \xrightarrow{\pi^*} H^2(SL_n(W_m), V) \]

is exact.

\textbf{Proof.} The long exact sequence obtained from \(3.6\) shows that we just need to check \(H^1(SL_n(W_m), \mathbb{M}_0(k)) \xrightarrow{\pi^*} H^1(SL_n(W_m), V)\) is an isomorphism. This holds when \(m = 1\) because both \(H^1(SL_n(k), S)\) and \(H^2(SL_n(k), S)\) are 0 by Theorem \(3.5\). For general \(m\) we can use induction because in the commutative diagram

\[\begin{array}{ccc}
H^1(SL_n(W_m), \mathbb{M}_0(k)) & \xrightarrow{\pi^*} & H^1(SL_n(W_m), V) \\
\downarrow & & \downarrow \\
H^1(SL_n(W_{m+1}), \mathbb{M}_0(k)) & \xrightarrow{\pi^*} & H^1(SL_n(W_{m+1}), V)
\end{array} \]

the vertical inflation maps are isomorphisms by Proposition \(3.6\) and Proposition \(3.8\). \(\square\)

\textbf{3.4. Proof of Theorem 3.1} Recall that we want to show the injectivity of \(H^2(SL_n(W_m), N) \to H^2(SL_n(W_m), M)\) whenever \(N \subseteq M\) are \(\mathbb{F}_p[SL_n(W_m)]\)-submodules of \(\mathbb{M}_0(k)r\) for some integer \(r \geq 1\).

We will write \(H^*(X)\) to mean \(H^*(SL_n(W_m), X)\). Note that it is enough to show that \(H^2(M) \to H^2(\mathbb{M}_0(k)r)\) is injective for all \(\mathbb{F}_p[SL_n(W_m)]\)-submodules \(M\) of \(\mathbb{M}_0(k)r\). If \((n, p) = 1\) then \(\mathbb{M}_0(k)r\) is semi-simple and the desired injectivity is immediate. So we will suppose \(p\) divides \(n\) from here on.

Consider the commutative diagram

\[\begin{array}{ccccccc}
0 & \to & M \cap S^r & \xrightarrow{i} & M & \xrightarrow{\pi} & M/(M \cap S^r) & \to & 0 \\
0 & \to & S^r & \xrightarrow{i} & \mathbb{M}_0(k)r & \xrightarrow{\pi} & V^r & \to & 0
\end{array} \quad (3.9) \]
where the is are inclusions. Thus \(j \) is necessarily an injection. Taking cohomology and using Proposition 3.12, we get a commutative diagram

\[
\begin{array}{c}
H^2(M \cap S^r) \\
\downarrow i^* \\
H^2(S^r) \\
\downarrow j^*
\end{array} \quad \begin{array}{c}
H^2(M) \\
\downarrow i^* \\
H^2(M/(M \cap S^r)) \\
\downarrow j^*
\end{array}
\]

(3.10)

\[
0 \longrightarrow H^2(S^r) \longrightarrow H^2(M_0(k)^r) \longrightarrow H^2(V^r)
\]

in which the horizontal rows are exact. Now the maps \(H^2(M \cap S^r) \longrightarrow H^2(S^r) \) and \(H^2(M/(M \cap S^r)) \longrightarrow H^2(S^r) \) are injective since \(S^r \) and \(V^r \) are semi-simple and \(i, j \) are injections. A straightforward diagram chase then shows that \(i^* : H^2(M) \to H^2(M_0(k)^r) \) is an injection, and this completes the proof of Theorem 3.13. \(\square \)

As a consequence, we have the following:

Corollary 3.13. Let \(k \) be a finite field of characteristic \(p \) and cardinality at least 4, and let \(M, N \) be two \(\mathbb{F}_p[SL_n(W_m)] \)-submodules of \(M_0(k)^r \) for some integer \(r \geq 1 \). Suppose we are given \(x \in H^2(SL_n(W_m), M) \) and \(y \in H^2(SL_n(W_m), N) \) such that \(x \) and \(y \) represent the same cohomology class in \(H^2(SL_n(W_m), M_0(k)^r) \). Then there exists a \(z \in H^2(SL_n(W_m), M \cap N) \) such that \(x = z \), resp. \(y = z \), holds in \(H^2(SL_n(W_m), M) \), resp. \(H^2(SL_n(W_m), M) \).

Proof. Consider the exact sequence

\[
0 \to M \cap N \xrightarrow{m \mapsto m \oplus m} M \oplus N \xrightarrow{m \oplus n \mapsto m - n} M + N \to 0.
\]

By Theorem 3.13 we get a short exact sequence

\[
0 \to H^2(M \cap N) \to H^2(M) \oplus H^2(N) \to H^2(M + N).
\]

Since \(H^2(M + N) \to H^2(M_0(k)^r) \) is injective, it follows that \(x \oplus y \) is zero in \(H^2(M + N) \) and therefore must be in the image of \(H^2(M \cap N) \). \(\square \)

4. **Proof of the main theorem**

From here on, we assume that we are given finite fields \(k \subseteq k' \) of characteristic \(p \). Let \(C \) be the category of complete local Noetherian rings \((A, m_A) \) with residue field \(A/m_A = k' \) and with morphisms required to be identity on \(k' \). We will abbreviate \(W(k) \) and \(W(k)_A \) for \(A \) an object in \(C \) to \(W \) and \(W_A \) respectively. Recall that \(W_A \) is the closed subring of \(A \) generated by the Teichmüller lifts of elements of \(k \); it is not an object in \(C \) unless \(k = k' \). Throughout this section we assume that the finite field \(k \) satisfies the hypothesis of the main theorem:

Assumption 4.1. The cardinality of \(k \) is at least 4. Furthermore, \(k \neq \mathbb{F}_5 \) if \(n = 2 \) and that \(k \neq \mathbb{F}_4 \) if \(n = 3 \).

Suppose we are given a local ring \((A, m_A) \) in \(C \) and a closed subgroup \(G \) of \(GL_n(A) \) such that \(G \mod m_A \supseteq SL_n(k) \). We want to show that \(G \) contains a conjugate of \(SL_n(W_A) \). Now, without any loss of generality, we may assume that \(G \mod m_A = SL_n(k) \). The quotient \(G/(G \cap SL_n(A)) \) is then pro-\(p \). This implies that \(G \cap SL_n(A) \mod m_A \) is a normal subgroup of \(SL_n(k) \) with index a power of \(p \). Now \(PSL_n(k) \) is simple since the cardinality of \(k \) is at least 4. Consequently we must have \(G \cap SL_n(A) \mod m_A = SL_n(k) \). Along with the fact that \(A \) is the
inductive limit of Artinian quotients A/m_A^n, we see that the main theorem follows
from the following proposition:

Proposition 4.2. Let $\pi: (A, m_A) \to (B, m_B)$ be a surjection of Artinian local
rings in C with $m_A \ker \pi = 0$, and let H be a subgroup of $SL_n(A)$ such that $\pi H =
SL_n(W_B)$. Assume that k satisfies assumption 4.1 Then we can find a $u \in GL_n(A)$ such that $\pi u = I$ and $uH u^{-1} \supseteq SL_n(W_A)$.

For the proof of the above proposition, let’s set $G := \pi^{-1}SL_n(W_B) \cap SL_n(A)$
where $\pi^{-1}SL_n(W_B)$ is the pre-image of $SL_n(W_B)$ under the map $\pi : GL_n(A) \to
GL_n(B)$. We then have an exact sequence

$$(4.1) \quad 0 \to M(\ker \pi) \to \pi^{-1}SL_n(W_B) \to SL_n(W_B) \to I$$

with $j(v) = I + v$ for $v \in M(\ker \pi)$, and this restricts to

$$(4.2) \quad 0 \to M_0(\ker \pi) \to G \to SL_n(W_B) \to I.$$

Note that $M(\ker \pi) \cong M(k) \otimes_k \ker \pi$ and $M_0(\ker \pi) \cong M_0(k) \otimes_k \ker \pi$
as $k[SL_n(W_B)]$-modules.

In what follows we will abbreviate $H^*(SL_n(W_B), M)$ to simply $H^*(M)$. For $X \subseteq SL_n(A)$, we set $M_0(X)$ to be the set of matrices $v \in M_0(\ker \pi)$ such that $j(v) \in X$. We then have the following:

Claim 4.3. $M_0(SL_n(W_A)) \subseteq M_0(H)$.

Let’s assume the above claim and carry on with the proof of Proposition 4.2.

Fix a section $s : SL_n(W_B) \to SL_n(W_A)$ that sends identity to identity and set $x : SL_n(W_B) \times SL_n(W_B) \to M_0(SL_n(W_A))$ to be the resulting 2-cocycle representing the extension

$$(4.3) \quad 0 \to M_0(SL_n(W_A)) \to SL_n(W_A) \to SL_n(W_B) \to I.$$

The section s and cocyle x thus set up an identification

$$\varphi : \pi^{-1}SL_n(W_B) \to M_0 \times_x SL_n(W_B),$$

and we have the following commutative diagram (cf. diagram 4.4)

$$0 \quad \longrightarrow \quad M_0(H) \quad \longrightarrow \quad M_0(H) \times_x SL_n(W_B) \quad \longrightarrow \quad SL_n(W_B) \quad \longrightarrow \quad I$$

and

$$0 \quad \longrightarrow \quad M_0(H) \quad \longrightarrow \quad \varphi H \quad \longrightarrow \quad SL_n(W_B) \quad \longrightarrow \quad I.$$

Suppose first that $(p, n) = 1$. Our assumptions on k imply that we can combine
Theorem 3.2 and Proposition 3.6 to conclude that $H^1(M_0(k)) = (0)$. Consequently,
we get $H^1(M_0(\ker \pi)) = (0)$. Furthermore, $H^2(M_0(H)) \to H^2(M_0(\ker \pi))$ is an
injection by Theorem 3.1. Hence we can apply Proposition 2.2 and conclude that $M_0(H) \times_x SL_n(W_B) = \varphi u H u^{-1}$ for some $u \in G$ (cf. sequence 4.2) with $\pi(u) = I$.

Suppose now p divides n. Since $H^1(k) = 0$ by Theorem 3.3 we get the following
the exact sequence

$$0 \to k \to H^1(M_0(k)) \to H^1(M(k)) \to 0 \to H^2(M_0(k)) \to H^2(M(k))$$

from $0 \to M_0(k) \to M(k) \to k \to 0$. Now since $\dim_k H^1(V) = 1$ by Theorem 3.2
and Proposition 3.8 we must also have $\dim_k H^1(M_0(k)) = 1$ by Proposition 3.12. Hence $H^1(M(k)) = 0$ and, consequently, $H^1(M(\ker \pi)) = 0$. Along with Theorem
The above exact sequence also shows that $H^2(M_0(H)) \to H^2(M(\ker \pi))$ is an injection. Hence $M_0(H) \times_x S L_n(W_B) = \varphi u H u^{-1}$ for some $u \in \pi^{-1} S L_n(W_B)$ (cf. sequence 4.11) with $\pi(u) = I$ by Proposition 22.12.

In any case, we have found a $u \in G L_n(A)$ with $\pi(u) = I$ and $\varphi u H u^{-1} = M_0(H) \times_x S L_n(W_B)$. Finally,

$$\varphi S L_n(W_A) = M_0(S L_n(W_A)) \times_x S L_n(W_B) \subseteq M_0(H) \times_x S L_n(W_B)$$

as $M_0(S L_n(W_A)) \subseteq M_0(H)$ by our claim 4.3 and the proposition follows.

We now establish the claim to complete the argument.

Proof of Claim 4.3 There is nothing to prove if $W_A \twoheadrightarrow W_B$ is an injection (as $M_0(S L_n(W_A))$ is then 0). Therefore we may suppose that we have a natural identification of $W_A \twoheadrightarrow W_B$ with $W_{m+1} \to W_m$ for some integer $m \geq 1$, and consequently an identification of $M_0(S L_n(W_A))$ with $M_0(k)$. We will freely use these identifications in what follows.

As in the proof of the proposition, let $x \in H^2(M_0(k))$ represent the extension 4.3 and let $y \in H^2(M_0(H))$ represent the extension

$$0 \to M_0(H) \xrightarrow{\cdot 2} H \to S L_n(W_B) \to I.$$

Then x and y represent the same cohomology class in $H^2(M_0(k) \cap M_0(H))$. By Corollary 3.13 there is a $z \in H^2(M_0(k) \cap M_0(H))$ such that x and z (resp. y and z) represent the same cohomology class in $H^2(M_0(k))$ (resp. $H^2(M_0(H))$).

Suppose the claim $M_0(k) \subseteq M_0(H)$ is false. Then we must have $M_0(k) \cap M_0(H) \subseteq S$ by Lemma 3.3. Now, if $M_0(k) \cap M_0(H) = 0$ then x will be zero, contradicting non-splitting of the extension 4.3.

Thus $M_0(k) \cap M_0(H)$ must be a non-zero submodule of S, and we must therefore have p dividing n. Now the image of x in $H^2(M_0(k)/S)$ represents the extension

$$0 \to M_0(k)/S \xrightarrow{\cdot 2} S L_n(W_{m+1})/Z \xrightarrow{\text{mod } p^m} S L_n(W_m) \to I.$$

Since this is non-split by Corollary 3.11 the image of x in $H^2(V)$ is not 0. This contradicts the fact that x is itself in the image of $H^2(S) \to H^2(M_0(k))$. □

Remark 4.4. It is well known that the mod-p reduction map $S L_2(\mathbb{Z}/p^2 \mathbb{Z}) \to S L_2(\mathbb{Z}/p \mathbb{Z})$ has a homomorphic section when p is 2 or 3. (See the exercises at the end of Chapter IV(3).) Thus the conclusion of the main theorem fails when $n = 2$ and k is \mathbb{F}_2 or \mathbb{F}_3.

The main theorem also fails when $n = 2$ and $k = \mathbb{F}_5$. To see this, choose $0 \neq \xi \in H^1(S L_2(\mathbb{F}_5), M_0(\mathbb{F}_5))$ and consider the subgroup

$$G := \{(I + \epsilon \xi(A)) A \mid A \in S L_2(\mathbb{F}_5)\}$$

of $S L_2(\mathbb{F}_5[\epsilon])$ where $\mathbb{F}_5[\epsilon]$ is the ring of dual numbers (so $\epsilon^2 = 0$). Clearly, $G \mod \epsilon = S L_2(\mathbb{F}_5)$. If G can be conjugated to $S L_2(\mathbb{F}_3)$ in $G L_2(\mathbb{F}_5[\epsilon])$, then the cocycle ξ must vanish in $H^1(S L_2(\mathbb{F}_5), M(\mathbb{F}_5))$. This cannot happen as the sequence

$$0 \to M_0(\mathbb{F}_5) \to M(\mathbb{F}_5) \to \mathbb{F}_5 \to 0$$

splits. □

Remark 4.5. Fix a finite field k satisfying assumption 4.11 and an integer $m \geq 1$. The main theorem then determines the universal deformation ring for $G := S L_n(W_m)$ with standard representation completely. (See [5, 6] for background on deformation of representations.)
To describe this fully, let $\rho: G \to SL_n(W_m)$ be the natural representation and set $\overline{\rho} := \rho \mod \rho$. We work inside the category of complete local Noetherian rings with residue field k from here on. Let R be the universal deformation ring for deformations of $(G, \overline{\rho})$ in this category and let $\rho_R: G \to GL_n(R)$ be the universal representation.

By universality, there is a morphism $\pi: R \to W_m$ such that $\pi \circ \rho_R$ is strictly equivalent to ρ. By our main theorem $X\rho_R(G)X^{-1} \supseteq SL_n(W_R)$ for some X in $GL_n(R)$; here, we can insist that X reduces to the identity modulo m_R. Now $\pi|_{W_R}: W_R \to W_m$ along with

$$|SL_n(W_m)| = |G| \geq |\rho_R(G)| \geq |SL_n(W_R)| \geq |SL_n(W_m)|$$

implies that $\pi|_{W_R}: W_R \to W_m$ is an isomorphism and that $X\rho_R(G)X^{-1} = SL_n(W_R)$. Replacing ρ_R with the strictly equivalent representation $X\rho_RX^{-1}$ if necessary, we can then assume that $\rho_R: G \to GL_n(R)$ takes values in $SL_n(W_R)$. Writing $i: W_m \to W_R$ for the inverse to $\pi|_{W_R}$, we conclude that $i \circ \rho$ is strictly equivalent to ρ_R.

We will now verify that $\rho: G \to SL_n(W_m)$ is the universal deformation. So given a lifting $\rho_A: G \to GL_n(A)$ of $\overline{\rho}: G \to SL_n(k)$, we need to show that there is a unique morphism $i_A: W_m \to A$ such that $i \circ \rho$ is strictly equivalent to ρ_A. Uniqueness comes for free (it has to send 1 to 1). For existence, note that by universality there is a morphism $\pi_A: R \to A$ such that $\pi_A \circ \rho_R$ is strictly equivalent to ρ_A. It is then an easy check to see that $i_A := \pi_A \circ i$ works.

Acknowledgements

The author thanks the referee for bringing to attention the work of Boston in [7] and other helpful comments.

References

School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH, United Kingdom

E-mail address: J.Manoharmayum@sheffield.ac.uk