## Exponential bases on two dimensional trapezoids

HTML articles powered by AMS MathViewer

- by Laura De Carli and Anudeep Kumar PDF
- Proc. Amer. Math. Soc.
**143**(2015), 2893-2903 Request permission

## Abstract:

We discuss the existence and stability of Riesz bases of exponential type of $L^2(T)$ for special domains $T\subset \mathbb {R}^2$ called trapezoids, and we construct exponential bases on the finite union of rectangles with the same height. We also generalize our main theorems in dimension $d\ge 3$.## References

- Avdonin, S. A.
*On the question of Riesz bases of exponential functions in $L^2$*. (translated into English in: Vestnik Leningrad Univ. Ser. Mat., 13, pp 203–2011 (1979) - S. A. Avdonin and S. A. Ivanov,
*Riesz bases of exponentials and divided differences*, Algebra i Analiz**13**(2001), no. 3, 1–17 (Russian, with Russian summary); English transl., St. Petersburg Math. J.**13**(2002), no. 3, 339–351. MR**1850184** - Richard Bellman,
*Convergence of non-harmonic Fourier series*, Duke Math. J.**10**(1943), 551–552. MR**8431** - Harold E. Benzinger,
*Nonharmonic Fourier series and spectral theory*, Trans. Amer. Math. Soc.**299**(1987), no. 1, 245–259. MR**869410**, DOI 10.1090/S0002-9947-1987-0869410-0 - Peter G. Casazza,
*The art of frame theory*, Taiwanese J. Math.**4**(2000), no. 2, 129–201. MR**1757401**, DOI 10.11650/twjm/1500407227 - P. Casazza and G. Kutyniok,
*Finite Frames: Theory and Applications*, Birkhauser, 2013. - R. J. Duffin and A. C. Schaeffer,
*A class of nonharmonic Fourier series*, Trans. Amer. Math. Soc.**72**(1952), 341–366. MR**47179**, DOI 10.1090/S0002-9947-1952-0047179-6 - Erich Freund and Joachim Petzold,
*Nonharmonic Fourier series: a formalism for analyzing signals*, Elektron. Informationsverarb. Kybernet.**20**(1984), no. 10-11, 575–592 (English, with French, German and Russian summaries). MR**777071** - S. Grepstad and N. Lev,
*Multi-tiling and Riesz bases*, arXiv:1212.4679 (2012) - A. E. Ingham,
*Some trigonometrical inequalities with applications to the theory of series*, Math. Z.**41**(1936), no. 1, 367–379. MR**1545625**, DOI 10.1007/BF01180426 - G. Kozma and S. Nitzan,
*Combining Riesz bases*arXiv:1210.6383 (2012) - Nir Lev,
*Riesz bases of exponentials on multiband spectra*, Proc. Amer. Math. Soc.**140**(2012), no. 9, 3127–3132. MR**2917085**, DOI 10.1090/S0002-9939-2012-11138-4 - Norman Levinson,
*On non-harmonic Fourier series*, Ann. of Math. (2)**37**(1936), no. 4, 919–936. MR**1503319**, DOI 10.2307/1968628 - M. Ĭ. Kadec′,
*The exact value of the Paley-Wiener constant*, Dokl. Akad. Nauk SSSR**155**(1964), 1253–1254 (Russian). MR**0162088** - Yurii I. Lyubarskii and Alexander Rashkovskii,
*Complete interpolating sequences for Fourier transforms supported by convex symmetric polygons*, Ark. Mat.**38**(2000), no. 1, 139–170. MR**1749363**, DOI 10.1007/BF02384495 - J. Marzo,
*Riesz basis of exponentials for a union of cubes in $\mathbb {R}^{d}$*, arXiv:math/0601288 (2006) - Raymond E. A. C. Paley and Norbert Wiener,
*Fourier transforms in the complex domain*, American Mathematical Society Colloquium Publications, vol. 19, American Mathematical Society, Providence, RI, 1987. Reprint of the 1934 original. MR**1451142**, DOI 10.1090/coll/019 - Kristian Seip,
*On the connection between exponential bases and certain related sequences in $L^2(-\pi ,\pi )$*, J. Funct. Anal.**130**(1995), no. 1, 131–160. MR**1331980**, DOI 10.1006/jfan.1995.1066 - Kristian Seip,
*A simple construction of exponential bases in $L^2$ of the union of several intervals*, Proc. Edinburgh Math. Soc. (2)**38**(1995), no. 1, 171–177. MR**1317335**, DOI 10.1017/S0013091500006295 - Wenchang Sun and Xingwei Zhou,
*On the stability of multivariate trigonometric systems*, J. Math. Anal. Appl.**235**(1999), no. 1, 159–167. MR**1758675**, DOI 10.1006/jmaa.1999.6386 - Sun, W. and Zhou, X.
*On Kadec’s $\frac 14$-Theorem and the Stability of Gabor Frames*. Applied and Comput. Harm. An. 7 (1999) no. 2, 239–242. - Robert M. Young,
*An introduction to nonharmonic Fourier series*, 1st ed., Academic Press, Inc., San Diego, CA, 2001. MR**1836633**

## Additional Information

**Laura De Carli**- Affiliation: Department of Mathematics, Florida International University, Miami, Florida 33199
- MR Author ID: 334320
- Email: decarlil@fiu.edu
**Anudeep Kumar**- Affiliation: Department of Mathematics, The George Washington University, Washington, DC 20052
- Email: anudeep@email.gwu.edu
- Received by editor(s): September 24, 2012
- Received by editor(s) in revised form: June 19, 2013
- Published electronically: March 11, 2015
- Communicated by: Alexander Iosevich
- © Copyright 2015
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc.
**143**(2015), 2893-2903 - MSC (2010): Primary 42C15, 42C30
- DOI: https://doi.org/10.1090/S0002-9939-2015-12329-5
- MathSciNet review: 3336614