## Primitivity of prime countable-dimensional regular algebras

HTML articles powered by AMS MathViewer

- by Pere Ara and Jason P. Bell PDF
- Proc. Amer. Math. Soc.
**143**(2015), 2759-2766 Request permission

## Abstract:

Let $k$ be a field and let $R$ be a countable-dimensional prime von Neumann regular $k$-algebra. We show that $R$ is primitive, answering a special case of a question of Kaplansky.## References

- Gene Abrams, Jason P. Bell, and Kulumani M. Rangaswamy,
*On prime nonprimitive von Neumann regular algebras*, Trans. Amer. Math. Soc.**366**(2014), no. 5, 2375–2392. MR**3165642**, DOI 10.1090/S0002-9947-2014-05878-9 - Gonzalo Aranda Pino, John Clark, Astrid an Huef, and Iain Raeburn,
*Kumjian-Pask algebras of higher-rank graphs*, Trans. Amer. Math. Soc.**365**(2013), no. 7, 3613–3641. MR**3042597**, DOI 10.1090/S0002-9947-2013-05717-0 - Pere Ara,
*The extended centroid of $C^*$-algebras*, Arch. Math. (Basel)**54**(1990), no. 4, 358–364. MR**1042128**, DOI 10.1007/BF01189582 - Pere Ara and Ruy Exel,
*Dynamical systems associated to separated graphs, graph algebras, and paradoxical decompositions*, Adv. Math.**252**(2014), 748–804. MR**3144248**, DOI 10.1016/j.aim.2013.11.009 - Pere Ara and Martin Mathieu,
*Local multipliers of $C^*$-algebras*, Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 2003. MR**1940428**, DOI 10.1007/978-1-4471-0045-4 - M. G. Corrales Garcia, D. Martin Barquero, C. Martin Gonzalez, M. Siles Molina and J. F. Solanilla Hernandez,
*Extreme cycles. The center of a Leavitt path algebra*, arXiv:1307.5252v1 [math.RA]. - O. I. Domanov,
*A prime but not primitive regular ring*, Uspehi Mat. Nauk**32**(1977), no. 6(198), 219–220 (Russian). MR**0573043** - Joe W. Fisher and Robert L. Snider,
*Prime von Neumann regular rings and primitive group algebras*, Proc. Amer. Math. Soc.**44**(1974), 244–250. MR**342551**, DOI 10.1090/S0002-9939-1974-0342551-9 - Irving Kaplansky,
*Algebraic and analytic aspects of operator algebras*, Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 1, American Mathematical Society, Providence, R.I., 1970. MR**0312283** - W. K. Nicholson,
*Lifting idempotents and exchange rings*, Trans. Amer. Math. Soc.**229**(1977), 269–278. MR**439876**, DOI 10.1090/S0002-9947-1977-0439876-2 - Kulumani M. Rangaswamy,
*Leavitt path algebras which are Zorn rings*, Ring theory and its applications, Contemp. Math., vol. 609, Amer. Math. Soc., Providence, RI, 2014, pp. 277–283. MR**3204366**, DOI 10.1090/conm/609/12119

## Additional Information

**Pere Ara**- Affiliation: Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
- MR Author ID: 206418
- Email: para@mat.uab.cat
**Jason P. Bell**- Affiliation: Department of Pure Mathematics, University of Waterloo, Waterloo, Canada
- MR Author ID: 632303
- Email: jpbell@uwaterloo.ca
- Received by editor(s): September 11, 2013
- Received by editor(s) in revised form: October 15, 2013, and November 18, 2013
- Published electronically: March 11, 2015
- Additional Notes: The first-named author was partially supported by DGI MINECO MTM2011-28992-C02-01, by FEDER UNAB10-4E-378 “Una manera de hacer Europa”, and by the Comissionat per Universitats i Recerca de la Generalitat de Catalunya

The second-named author was supported by NSERC grant 31-611456 - Communicated by: Birge Huisgen-Zimmermann
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**143**(2015), 2759-2766 - MSC (2010): Primary 16E50; Secondary 16D60, 16N60
- DOI: https://doi.org/10.1090/S0002-9939-2015-12434-3
- MathSciNet review: 3336601