## Non-zero Lyapunov exponents for some conservative partially hyperbolic systems

HTML articles powered by AMS MathViewer

- by Yunhua Zhou PDF
- Proc. Amer. Math. Soc.
**143**(2015), 3147-3153 Request permission

## Abstract:

Let $\text {PH}^{1}_\mu (M,3)$ be the set of $C^{1}$ conservative partially hyperbolic diffeomorphisms with center dimensions three or less. We prove that there is a dense subset $\mathcal {H}\subset \text {PH}^{1}_\mu (M,3)$ such that each $f\in \mathcal {H}$ has non-zero Lyapunov exponents on a set of positive volume.## References

- Artur Avila,
*On the regularization of conservative maps*, Acta Math.**205**(2010), no. 1, 5–18. MR**2736152**, DOI 10.1007/s11511-010-0050-y - Artur Avila and Jairo Bochi,
*Nonuniform hyperbolicity, global dominated splittings and generic properties of volume-preserving diffeomorphisms*, Trans. Amer. Math. Soc.**364**(2012), no. 6, 2883–2907. MR**2888232**, DOI 10.1090/S0002-9947-2012-05423-7 - Alexandre T. Baraviera and Christian Bonatti,
*Removing zero Lyapunov exponents*, Ergodic Theory Dynam. Systems**23**(2003), no. 6, 1655–1670. MR**2032482**, DOI 10.1017/S0143385702001773 - K. Burns, D. Dolgopyat, and Ya. Pesin,
*Partial hyperbolicity, Lyapunov exponents and stable ergodicity*, J. Statist. Phys.**108**(2002), no. 5-6, 927–942. Dedicated to David Ruelle and Yasha Sinai on the occasion of their 65th birthdays. MR**1933439**, DOI 10.1023/A:1019779128351 - Keith Burns and Amie Wilkinson,
*On the ergodicity of partially hyperbolic systems*, Ann. of Math. (2)**171**(2010), no. 1, 451–489. MR**2630044**, DOI 10.4007/annals.2010.171.451 - Yongluo Cao,
*Non-zero Lyapunov exponents and uniform hyperbolicity*, Nonlinearity**16**(2003), no. 4, 1473–1479. MR**1986306**, DOI 10.1088/0951-7715/16/4/316 - Dmitry Dolgopyat and Amie Wilkinson,
*Stable accessibility is $C^1$ dense*, Astérisque**287**(2003), xvii, 33–60. Geometric methods in dynamics. II. MR**2039999** - F. Rodriguez Hertz, M. A. Rodriguez Hertz, A. Tahzibi, and R. Ures,
*New criteria for ergodicity and nonuniform hyperbolicity*, Duke Math. J.**160**(2011), no. 3, 599–629. MR**2852370**, DOI 10.1215/00127094-1444314 - F. Rodriguez Hertz, M. A. Rodriguez Hertz, and R. Ures,
*Accessibility and stable ergodicity for partially hyperbolic diffeomorphisms with 1D-center bundle*, Invent. Math.**172**(2008), no. 2, 353–381. MR**2390288**, DOI 10.1007/s00222-007-0100-z - Ja. B. Pesin,
*Characteristic Ljapunov exponents, and smooth ergodic theory*, Uspehi Mat. Nauk**32**(1977), no. 4 (196), 55–112, 287 (Russian). MR**0466791** - Yakov Pesin and Vaughn Climenhaga,
*Open problems in the theory of non-uniform hyperbolicity*, Discrete Contin. Dyn. Syst.**27**(2010), no. 2, 589–607. MR**2600681**, DOI 10.3934/dcds.2010.27.589 - Charles Pugh and Michael Shub,
*Stably ergodic dynamical systems and partial hyperbolicity*, J. Complexity**13**(1997), no. 1, 125–179. MR**1449765**, DOI 10.1006/jcom.1997.0437 - Yunhua Zhou,
*The local $C^1$-density of stable ergodicity*, Discrete Contin. Dyn. Syst.**33**(2013), no. 7, 2621–2629. MR**3007719**, DOI 10.3934/dcds.2013.33.2621

## Additional Information

**Yunhua Zhou**- Affiliation: College of Mathematics and Statistics, Chongqing University, Chongqing, 401331, People’s Republic of China
- Email: zhouyh@cqu.edu.cn
- Received by editor(s): December 29, 2011
- Received by editor(s) in revised form: March 15, 2014
- Published electronically: February 17, 2015
- Additional Notes: The author was supported by NSFC (11471056), Natural Science Foundation Project of CQCSTC (cstcjjA00003) and Fundamental Research Funds for the Central Universities (CQDXWL2012008).
- Communicated by: Yingfei Yi
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**143**(2015), 3147-3153 - MSC (2010): Primary 37D25; Secondary 37D30
- DOI: https://doi.org/10.1090/S0002-9939-2015-12498-7
- MathSciNet review: 3336638