Indivisibility of central values of $L$-functions for modular forms
Author:
Masataka Chida
Journal:
Proc. Amer. Math. Soc. 143 (2015), 2829-2840
MSC (2010):
Primary 11F67; Secondary 11F37
DOI:
https://doi.org/10.1090/S0002-9939-2015-12503-8
Published electronically:
February 25, 2015
MathSciNet review:
3336608
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper, we generalize works of Kohnen and Ono (in Invent. Math., 1999) and James and Ono (in Math. Ann., 1999) on indivisibility of (the algebraic part of) central critical values of $L$-functions to higher weight modular forms.
- Avner Ash and Glenn Stevens, Modular forms in characteristic $l$ and special values of their $L$-functions, Duke Math. J. 53 (1986), no. 3, 849–868. MR 860675, DOI https://doi.org/10.1215/S0012-7094-86-05346-9
- Jan Hendrik Bruinier, Nonvanishing modulo $l$ of Fourier coefficients of half-integral weight modular forms, Duke Math. J. 98 (1999), no. 3, 595–611. MR 1695803, DOI https://doi.org/10.1215/S0012-7094-99-09819-8
- Pierre Deligne, Formes modulaires et représentations $l$-adiques, Séminaire Bourbaki. Vol. 1968/69: Exposés 347–363, Lecture Notes in Math., vol. 175, Springer, Berlin, 1971, pp. Exp. No. 355, 139–172 (French). MR 3077124
- Solomon Friedberg and Jeffrey Hoffstein, Nonvanishing theorems for automorphic $L$-functions on ${\rm GL}(2)$, Ann. of Math. (2) 142 (1995), no. 2, 385–423. MR 1343325, DOI https://doi.org/10.2307/2118638
- Kevin James and Ken Ono, Selmer groups of quadratic twists of elliptic curves, Math. Ann. 314 (1999), no. 1, 1–17. MR 1689260, DOI https://doi.org/10.1007/s002080050283
- Winfried Kohnen, Fourier coefficients of modular forms of half-integral weight, Math. Ann. 271 (1985), no. 2, 237–268. MR 783554, DOI https://doi.org/10.1007/BF01455989
- Winfried Kohnen and Ken Ono, Indivisibility of class numbers of imaginary quadratic fields and orders of Tate-Shafarevich groups of elliptic curves with complex multiplication, Invent. Math. 135 (1999), no. 2, 387–398. MR 1666783, DOI https://doi.org/10.1007/s002220050290
- B. Mazur, J. Tate, and J. Teitelbaum, On $p$-adic analogues of the conjectures of Birch and Swinnerton-Dyer, Invent. Math. 84 (1986), no. 1, 1–48. MR 830037, DOI https://doi.org/10.1007/BF01388731
- Ken Ono and Christopher Skinner, Non-vanishing of quadratic twists of modular $L$-functions, Invent. Math. 134 (1998), no. 3, 651–660. MR 1660945, DOI https://doi.org/10.1007/s002220050275
- Ken Ono and Christopher Skinner, Fourier coefficients of half-integral weight modular forms modulo $l$, Ann. of Math. (2) 147 (1998), no. 2, 453–470. MR 1626761, DOI https://doi.org/10.2307/121015
- Kenneth A. Ribet, Galois representations attached to eigenforms with Nebentypus, Modular functions of one variable, V (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976) Springer, Berlin, 1977, pp. 17–51. Lecture Notes in Math., Vol. 601. MR 0453647
- Kenneth A. Ribet, On $l$-adic representations attached to modular forms. II, Glasgow Math. J. 27 (1985), 185–194. MR 819838, DOI https://doi.org/10.1017/S0017089500006170
- Jean-Pierre Serre, Congruences et formes modulaires [d’après H. P. F. Swinnerton-Dyer], Séminaire Bourbaki, 24e année (1971/1972), Exp. No. 416, Springer, Berlin, 1973, pp. 319–338. Lecture Notes in Math., Vol. 317 (French). MR 0466020
- Goro Shimura, On modular forms of half integral weight, Ann. of Math. (2) 97 (1973), 440–481. MR 332663, DOI https://doi.org/10.2307/1970831
- Jacob Sturm, On the congruence of modular forms, Number theory (New York, 1984–1985) Lecture Notes in Math., vol. 1240, Springer, Berlin, 1987, pp. 275–280. MR 894516, DOI https://doi.org/10.1007/BFb0072985
- H. P. F. Swinnerton-Dyer, On $l$-adic representations and congruences for coefficients of modular forms, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, 1972) Springer, Berlin, 1973, pp. 1–55. Lecture Notes in Math., Vol. 350. MR 0406931
- J.-L. Waldspurger, Sur les coefficients de Fourier des formes modulaires de poids demi-entier, J. Math. Pures Appl. (9) 60 (1981), no. 4, 375–484 (French). MR 646366
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11F67, 11F37
Retrieve articles in all journals with MSC (2010): 11F67, 11F37
Additional Information
Masataka Chida
Affiliation:
Graduate School of Mathematics, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto, Japan, 606-8502
Email:
chida@math.kyoto-u.ac.jp
Received by editor(s):
March 15, 2014
Published electronically:
February 25, 2015
Additional Notes:
The author was supported in part by the Japan Society for the Promotion of Science Research Fellowships for Young Scientists
Communicated by:
Ken Ono
Article copyright:
© Copyright 2015
American Mathematical Society