Quadratic polynomials, multipliers and equidistribution
HTML articles powered by AMS MathViewer
- by Xavier Buff and Thomas Gauthier
- Proc. Amer. Math. Soc. 143 (2015), 3011-3017
- DOI: https://doi.org/10.1090/S0002-9939-2015-12506-3
- Published electronically: February 25, 2015
- PDF | Request permission
Abstract:
Given a sequence of complex numbers $\rho _n$, we study the asymptotic distribution of the sets of parameters $c\in \mathbb {C}$ such that the quadratic map $z^2+c$ has a cycle of period $n$ and multiplier $\rho _n$. Assume $\frac {1}{n}\log |\rho _n|\to L$. If $L\leq \log 2$, they equidistribute on the boundary of the Mandelbrot set. If $L>\log 2$, they equidistribute on the equipotential outside the Mandelbrot set of level $2L-2\log 2$.References
- Giovanni Bassanelli and François Berteloot, Distribution of polynomials with cycles of a given multiplier, Nagoya Math. J. 201 (2011), 23–43. MR 2772169, DOI 10.1215/00277630-2010-016
- Paul Blanchard, Robert L. Devaney, and Linda Keen, The dynamics of complex polynomials and automorphisms of the shift, Invent. Math. 104 (1991), no. 3, 545–580. MR 1106749, DOI 10.1007/BF01245090
- John Milnor, Geometry and dynamics of quadratic rational maps, Experiment. Math. 2 (1993), no. 1, 37–83. With an appendix by the author and Lei Tan. MR 1246482
- Thomas Ransford, Potential theory in the complex plane, London Mathematical Society Student Texts, vol. 28, Cambridge University Press, Cambridge, 1995. MR 1334766, DOI 10.1017/CBO9780511623776
- Joseph H. Silverman, The arithmetic of dynamical systems, Graduate Texts in Mathematics, vol. 241, Springer, New York, 2007. MR 2316407, DOI 10.1007/978-0-387-69904-2
- Saeed Zakeri, On biaccessible points of the Mandelbrot set, Proc. Amer. Math. Soc. 134 (2006), no. 8, 2239–2250. MR 2213696, DOI 10.1090/S0002-9939-06-08559-5
Bibliographic Information
- Xavier Buff
- Affiliation: Institut de Mathématiques de Toulouse, Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex, France
- Email: xavier.buff@math.univ-toulouse.fr
- Thomas Gauthier
- Affiliation: LAMFA, Université de Picardie Jules Verne, 33 rue Saint-Leu, 80039 Amiens Cedex 1, France
- MR Author ID: 1019319
- Email: thomas.gauthier@u-picardie.fr
- Received by editor(s): August 29, 2013
- Received by editor(s) in revised form: March 5, 2014
- Published electronically: February 25, 2015
- Additional Notes: The research of the first author was supported by the IUF
- Communicated by: Nimish Shah
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 143 (2015), 3011-3017
- MSC (2010): Primary 37F10, 37F45
- DOI: https://doi.org/10.1090/S0002-9939-2015-12506-3
- MathSciNet review: 3336625