On the inviscid limit of the Navier-Stokes equations
HTML articles powered by AMS MathViewer
- by Peter Constantin, Igor Kukavica and Vlad Vicol
- Proc. Amer. Math. Soc. 143 (2015), 3075-3090
- DOI: https://doi.org/10.1090/S0002-9939-2015-12638-X
- Published electronically: March 4, 2015
- PDF | Request permission
Abstract:
We consider the convergence in the $L^2$ norm, uniformly in time, of the Navier-Stokes equations with Dirichlet boundary conditions to the Euler equations with slip boundary conditions. We prove that if the Oleinik conditions of no back-flow in the trace of the Euler flow, and of a lower bound for the Navier-Stokes vorticity is assumed in a Kato-like boundary layer, then the inviscid limit holds.References
- R. Alexandre, Y.-G. Wang, C.-J. Xu, and T. Yang, Well-posedness of the Prandtl equation in Sobolev spaces, arXiv preprint arXiv:1203.5991, 2012.
- C. Bardos, L. Székelyhidi Jr., and E. Wiedemann, Non-uniqueness for the Euler equations: the effect of the boundary, arXiv preprint arXiv:1305.0773, 2013.
- Claude W. Bardos and Edriss S. Titi, Mathematics and turbulence: where do we stand?, J. Turbul. 14 (2013), no. 3, 42–76. MR 3174319, DOI 10.1080/14685248.2013.771838
- Claude Bardos, Edriss S. Titi, and Emil Wiedemann, The vanishing viscosity as a selection principle for the Euler equations: the case of 3D shear flow, C. R. Math. Acad. Sci. Paris 350 (2012), no. 15-16, 757–760 (English, with English and French summaries). MR 2981348, DOI 10.1016/j.crma.2012.09.005
- G. K. Batchelor, An introduction to fluid dynamics, Second paperback edition, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1999. MR 1744638
- Marco Cannone, Maria Carmela Lombardo, and Marco Sammartino, Existence and uniqueness for the Prandtl equations, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), no. 3, 277–282 (English, with English and French summaries). MR 1817376, DOI 10.1016/S0764-4442(00)01798-5
- R. E. Caflisch and M. Sammartino, Existence and singularities for the Prandtl boundary layer equations, ZAMM Z. Angew. Math. Mech. 80 (2000), no. 11-12, 733–744. Special issue on the occasion of the 125th anniversary of the birth of Ludwig Prandtl. MR 1801538, DOI 10.1002/1521-4001(200011)80:11/12<733::AID-ZAMM733>3.0.CO;2-L
- Peter Constantin and Jiahong Wu, Inviscid limit for vortex patches, Nonlinearity 8 (1995), no. 5, 735–742. MR 1355040
- Peter Constantin and Jiahong Wu, The inviscid limit for non-smooth vorticity, Indiana Univ. Math. J. 45 (1996), no. 1, 67–81. MR 1406684, DOI 10.1512/iumj.1996.45.1960
- Weinan E, Boundary layer theory and the zero-viscosity limit of the Navier-Stokes equation, Acta Math. Sin. (Engl. Ser.) 16 (2000), no. 2, 207–218. MR 1778702, DOI 10.1007/s101140000034
- Weinan E and Bjorn Engquist, Blowup of solutions of the unsteady Prandtl’s equation, Comm. Pure Appl. Math. 50 (1997), no. 12, 1287–1293. MR 1476316, DOI 10.1002/(SICI)1097-0312(199712)50:12<1287::AID-CPA4>3.0.CO;2-4
- E. Grenier, Y. Guo, and T. Nguyen, Spectral instability of symmetric shear flows in a two-dimensional channel, arXiv preprint arXiv:1402.1395, 2014.
- Yan Guo and Toan Nguyen, A note on Prandtl boundary layers, Comm. Pure Appl. Math. 64 (2011), no. 10, 1416–1438. MR 2849481, DOI 10.1002/cpa.20377
- Emmanuel Grenier, On the nonlinear instability of Euler and Prandtl equations, Comm. Pure Appl. Math. 53 (2000), no. 9, 1067–1091. MR 1761409, DOI 10.1002/1097-0312(200009)53:9<1067::AID-CPA1>3.3.CO;2-H
- F. Gargano, M. Sammartino, and V. Sciacca, Singularity formation for Prandtl’s equations, Phys. D 238 (2009), no. 19, 1975–1991. MR 2582626, DOI 10.1016/j.physd.2009.07.007
- David Gérard-Varet and Emmanuel Dormy, On the ill-posedness of the Prandtl equation, J. Amer. Math. Soc. 23 (2010), no. 2, 591–609. MR 2601044, DOI 10.1090/S0894-0347-09-00652-3
- D. Gérard-Varet and N. Masmoudi, Well-posedness for the prandtl system without analyticity or monotonicity, arXiv preprint arXiv:1305.0221, 2013.
- D. Gérard-Varet and T. Nguyen, Remarks on the ill-posedness of the Prandtl equation, Asymptot. Anal. 77 (2012), no. 1-2, 71–88. MR 2952715
- Lan Hong and John K. Hunter, Singularity formation and instability in the unsteady inviscid and viscous Prandtl equations, Commun. Math. Sci. 1 (2003), no. 2, 293–316. MR 1980477
- Tosio Kato, Remarks on zero viscosity limit for nonstationary Navier-Stokes flows with boundary, Seminar on nonlinear partial differential equations (Berkeley, Calif., 1983) Math. Sci. Res. Inst. Publ., vol. 2, Springer, New York, 1984, pp. 85–98. MR 765230, DOI 10.1007/978-1-4612-1110-5_{6}
- James P. Kelliher, On Kato’s conditions for vanishing viscosity, Indiana Univ. Math. J. 56 (2007), no. 4, 1711–1721. MR 2354697, DOI 10.1512/iumj.2007.56.3080
- James P. Kelliher, Vanishing viscosity and the accumulation of vorticity on the boundary, Commun. Math. Sci. 6 (2008), no. 4, 869–880. MR 2511697
- James P. Kelliher, On the vanishing viscosity limit in a disk, Math. Ann. 343 (2009), no. 3, 701–726. MR 2480708, DOI 10.1007/s00208-008-0287-3
- J.P. Kelliher. Private communication. 2014.
- Igor Kukavica, Nader Masmoudi, Vlad Vicol, and Tak Kwong Wong, On the local well-posedness of the Prandtl and hydrostatic Euler equations with multiple monotonicity regions, SIAM J. Math. Anal. 46 (2014), no. 6, 3865–3890. MR 3284569, DOI 10.1137/140956440
- Igor Kukavica and Vlad Vicol, On the local existence of analytic solutions to the Prandtl boundary layer equations, Commun. Math. Sci. 11 (2013), no. 1, 269–292. MR 2975371, DOI 10.4310/CMS.2013.v11.n1.a8
- M. C. Lopes Filho, A. L. Mazzucato, and H. J. Nussenzveig Lopes, Vanishing viscosity limit for incompressible flow inside a rotating circle, Phys. D 237 (2008), no. 10-12, 1324–1333. MR 2454590, DOI 10.1016/j.physd.2008.03.009
- M. C. Lopes Filho, A. L. Mazzucato, H. J. Nussenzveig Lopes, and Michael Taylor, Vanishing viscosity limits and boundary layers for circularly symmetric 2D flows, Bull. Braz. Math. Soc. (N.S.) 39 (2008), no. 4, 471–513. MR 2465261, DOI 10.1007/s00574-008-0001-9
- Yasunori Maekawa, Solution formula for the vorticity equations in the half plane with application to high vorticity creation at zero viscosity limit, Adv. Differential Equations 18 (2013), no. 1-2, 101–146. MR 3052712
- Yasunori Maekawa, On the inviscid limit problem of the vorticity equations for viscous incompressible flows in the half-plane, Comm. Pure Appl. Math. 67 (2014), no. 7, 1045–1128. MR 3207194, DOI 10.1002/cpa.21516
- Nader Masmoudi, The Euler limit of the Navier-Stokes equations, and rotating fluids with boundary, Arch. Rational Mech. Anal. 142 (1998), no. 4, 375–394. MR 1645962, DOI 10.1007/s002050050097
- Nader Masmoudi, Remarks about the inviscid limit of the Navier-Stokes system, Comm. Math. Phys. 270 (2007), no. 3, 777–788. MR 2276465, DOI 10.1007/s00220-006-0171-5
- Anna Mazzucato and Michael Taylor, Vanishing viscosity plane parallel channel flow and related singular perturbation problems, Anal. PDE 1 (2008), no. 1, 35–93. MR 2431354, DOI 10.2140/apde.2008.1.35
- N. Masmoudi and T. K. Wong, Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods, Comm. Pure Appl. Math., to appear, 2012.
- Nader Masmoudi and Tak Kwong Wong, On the $H^s$ theory of hydrostatic Euler equations, Arch. Ration. Mech. Anal. 204 (2012), no. 1, 231–271. MR 2898740, DOI 10.1007/s00205-011-0485-0
- O. A. Oleĭnik, On the mathematical theory of boundary layer for an unsteady flow of incompressible fluid, J. Appl. Math. Mech. 30 (1966), 951–974 (1967). MR 0223134, DOI 10.1016/0021-8928(66)90001-3
- Joseph Oliger and Arne Sundström, Theoretical and practical aspects of some initial boundary value problems in fluid dynamics, SIAM J. Appl. Math. 35 (1978), no. 3, 419–446. MR 521943, DOI 10.1137/0135035
- O. A. Oleinik and V. N. Samokhin, Mathematical models in boundary layer theory, Applied Mathematics and Mathematical Computation, vol. 15, Chapman & Hall/CRC, Boca Raton, FL, 1999. MR 1697762
- L. Prandtl, Über flüssigkeitsbewegung bei sehr kleiner reibung, Verh. III Intern. Math. Kongr. Heidelberg, Teuber, Leipzig, pages 485–491, 1904.
- Marco Sammartino and Russel E. Caflisch, Zero viscosity limit for analytic solutions, of the Navier-Stokes equation on a half-space. I. Existence for Euler and Prandtl equations, Comm. Math. Phys. 192 (1998), no. 2, 433–461. MR 1617542, DOI 10.1007/s002200050304
- Marco Sammartino and Russel E. Caflisch, Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space. II. Construction of the Navier-Stokes solution, Comm. Math. Phys. 192 (1998), no. 2, 463–491. MR 1617538, DOI 10.1007/s002200050305
- Roger Temam and Xiaoming Wang, On the behavior of the solutions of the Navier-Stokes equations at vanishing viscosity, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997), no. 3-4, 807–828 (1998). Dedicated to Ennio De Giorgi. MR 1655543
- Xiaoming Wang, A Kato type theorem on zero viscosity limit of Navier-Stokes flows, Indiana Univ. Math. J. 50 (2001), no. Special Issue, 223–241. Dedicated to Professors Ciprian Foias and Roger Temam (Bloomington, IN, 2000). MR 1855670, DOI 10.1512/iumj.2001.50.2098
- Zhouping Xin and Liqun Zhang, On the global existence of solutions to the Prandtl’s system, Adv. Math. 181 (2004), no. 1, 88–133. MR 2020656, DOI 10.1016/S0001-8708(03)00046-X
Bibliographic Information
- Peter Constantin
- Affiliation: Department of Mathematics, Princeton University, Princeton, New Jersey 08544
- Email: const@math.princeton.edu
- Igor Kukavica
- Affiliation: Department of Mathematics, University of Southern California, Los Angeles, California 90089
- MR Author ID: 314775
- Email: kukavica@usc.edu
- Vlad Vicol
- Affiliation: Department of Mathematics, Princeton University, Princeton, New Jersey 08544
- MR Author ID: 846012
- ORCID: setImmediate$0.00243841196800898$2
- Email: vvicol@math.princeton.edu
- Received by editor(s): March 23, 2014
- Received by editor(s) in revised form: March 30, 2014
- Published electronically: March 4, 2015
- Communicated by: Catherine Sulem
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 143 (2015), 3075-3090
- MSC (2010): Primary 35Q35, 35Q30, 76D09
- DOI: https://doi.org/10.1090/S0002-9939-2015-12638-X
- MathSciNet review: 3336632