## On nonexistence of positive solutions of quasi-linear inequality on Riemannian manifolds

HTML articles powered by AMS MathViewer

- by Yuhua Sun PDF
- Proc. Amer. Math. Soc.
**143**(2015), 2969-2984 Request permission

## Abstract:

We investigate the nonexistence of a positive solution to the following differential inequality: \begin{equation} div(|\nabla u|^{m-2}\nabla u)+u^{\sigma }\leq 0, \tag {1} \end{equation} on a noncompact complete Riemannian manifold, where $m>1$ and $\sigma >m-1$ are parameters. Our main result is as follows: If the volume of a geodesic ball of radius $r$ with a fixed center $x_0$ is bounded for large enough $r$ by $Cr^{p}\ln ^qr$, where $p=\frac {m\sigma }{\sigma -m+1}, q=\frac {m-1}{\sigma -m+1}$, then (1) has no positive weak solution.

We also show the sharpness of the parameters $p, q$.

## References

- Robert Brooks,
*A relation between growth and the spectrum of the Laplacian*, Math. Z.**178**(1981), no. 4, 501–508. MR**638814**, DOI 10.1007/BF01174771 - S. Y. Cheng and S. T. Yau,
*Differential equations on Riemannian manifolds and their geometric applications*, Comm. Pure Appl. Math.**28**(1975), no. 3, 333–354. MR**385749**, DOI 10.1002/cpa.3160280303 - G. Caristi, L. D’Ambrosio, and E. Mitidieri,
*Liouville theorems for some nonlinear inequalities*, Tr. Mat. Inst. Steklova**260**(2008), no. Teor. Funkts. i Nelineĭn. Uravn. v Chastn. Proizvodn., 97–118; English transl., Proc. Steklov Inst. Math.**260**(2008), no. 1, 90–111. MR**2489506**, DOI 10.1134/S0081543808010070 - G. Karisti, È. Mitidieri, and S. I. Pokhozhaev,
*Liouville theorems for quasilinear elliptic inequalities*, Dokl. Akad. Nauk**424**(2009), no. 6, 741–747 (Russian); English transl., Dokl. Math.**79**(2009), no. 1, 118–124. MR**2513890**, DOI 10.1134/S1064562409010360 - B. Gidas and J. Spruck,
*Global and local behavior of positive solutions of nonlinear elliptic equations*, Comm. Pure Appl. Math.**34**(1981), no. 4, 525–598. MR**615628**, DOI 10.1002/cpa.3160340406 - D. Gilbarg and N. S. Trudinger,
*Elliptic partial differential equations of second order*, Springer, 1998. - Alexander Grigor′yan,
*Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds*, Bull. Amer. Math. Soc. (N.S.)**36**(1999), no. 2, 135–249. MR**1659871**, DOI 10.1090/S0273-0979-99-00776-4 - Alexander Grigor’yan and Vladimir A. Kondratiev,
*On the existence of positive solutions of semilinear elliptic inequalities on Riemannian manifolds*, Around the research of Vladimir Maz’ya. II, Int. Math. Ser. (N. Y.), vol. 12, Springer, New York, 2010, pp. 203–218. MR**2676174**, DOI 10.1007/978-1-4419-1343-2_{8} - Alexander Grigor’yan and Yuhua Sun,
*On nonnegative solutions of the inequality $\Delta u+u^\sigma \leq 0$ on Riemannian manifolds*, Comm. Pure Appl. Math.**67**(2014), no. 8, 1336–1352. MR**3225632**, DOI 10.1002/cpa.21493 - Ilkka Holopainen,
*A sharp $L^q$-Liouville theorem for $p$-harmonic functions*, Israel J. Math.**115**(2000), 363–379. MR**1750009**, DOI 10.1007/BF02810597 - Andrej A. Kon′kov,
*Comparison theorems for second-order elliptic inequalities*, Nonlinear Anal.**59**(2004), no. 4, 583–608. MR**2094430**, DOI 10.1016/j.na.2004.06.002 - Barnabé Pessoa Lima, José Fábio Bezerra Montenegro, and Newton Luís Santos,
*Eigenvalue estimates for the $p$-Laplace operator on manifolds*, Nonlinear Anal.**72**(2010), no. 2, 771–781. MR**2579344**, DOI 10.1016/j.na.2009.07.019 - Peter Lindqvist,
*On the equation $\textrm {div}\,(|\nabla u|^{p-2}\nabla u)+\lambda |u|^{p-2}u=0$*, Proc. Amer. Math. Soc.**109**(1990), no. 1, 157–164. MR**1007505**, DOI 10.1090/S0002-9939-1990-1007505-7 - È. Mitidieri and S. I. Pokhozhaev,
*Absence of global positive solutions of quasilinear elliptic inequalities*, Dokl. Akad. Nauk**359**(1998), no. 4, 456–460 (Russian). MR**1668404** - È. Mitidieri, S. I. Pokhozhaev, Nonexistence of positive solutions for quasilinear elliptic problems on $\mathbb {R}^N$, Proc. Steklov Inst. Math., Vol.
**227**(1999), 186-216. - È. Mitidieri and S. I. Pokhozhaev,
*Absence of positive solutions for quasilinear elliptic problems in $\textbf {R}^N$*, Tr. Mat. Inst. Steklova**227**(1999), no. Issled. po Teor. Differ. Funkts. Mnogikh Perem. i ee Prilozh. 18, 192–222 (Russian); English transl., Proc. Steklov Inst. Math.**4(227)**(1999), 186–216. MR**1784317** - È. Mitidieri and S. I. Pokhozhaev,
*A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities*, Tr. Mat. Inst. Steklova**234**(2001), 1–384 (Russian, with English and Russian summaries); English transl., Proc. Steklov Inst. Math.**3(234)**(2001), 1–362. MR**1879326** - È. Mitidieri and S. I. Pokhozhaev, A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities (Nauka, Moscow, 2001), Tr. Math. Inst. im., V. A. Steklova, Ross. Akad. Nauk
**234**[Proc. Steklov Inst. Math.**234**(2001)]. - Patrizia Pucci and James Serrin,
*A note on the strong maximum principle for elliptic differential inequalities*, J. Math. Pures Appl. (9)**79**(2000), no. 1, 57–71. MR**1742565**, DOI 10.1016/S0021-7824(99)00146-4 - Patrizia Pucci, Marco Rigoli, and James Serrin,
*Qualitative properties for solutions of singular elliptic inequalities on complete manifolds*, J. Differential Equations**234**(2007), no. 2, 507–543. MR**2300666**, DOI 10.1016/j.jde.2006.11.013 - Patrizia Pucci, James Serrin, and Henghui Zou,
*A strong maximum principle and a compact support principle for singular elliptic inequalities*, Ricerche Mat.**48**(1999), no. suppl., 373–398. Papers in memory of Ennio De Giorgi (Italian). MR**1765693** - James Serrin,
*Local behavior of solutions of quasi-linear equations*, Acta Math.**111**(1964), 247–302. MR**170096**, DOI 10.1007/BF02391014 - J. Serrin,
*The Liouville theorem for homogeneous elliptic differential inequalities*, J. Math. Sci. (N.Y.)**179**(2011), no. 1, 174–183. Problems in mathematical analysis. No. 61. MR**3014104**, DOI 10.1007/s10958-011-0588-z - Takaŝi Kusano and Akio Ogata,
*Existence and asymptotic behavior of positive solutions of second order quasilinear differential equations*, Funkcial. Ekvac.**37**(1994), no. 2, 345–361. MR**1299870** - François de Thélin,
*Sur l’espace propre associé à la première valeur propre du pseudo-laplacien*, C. R. Acad. Sci. Paris Sér. I Math.**303**(1986), no. 8, 355–358 (French, with English summary). MR**860838** - Peter Tolksdorf,
*Regularity for a more general class of quasilinear elliptic equations*, J. Differential Equations**51**(1984), no. 1, 126–150. MR**727034**, DOI 10.1016/0022-0396(84)90105-0

## Additional Information

**Yuhua Sun**- Affiliation: Department of Mathematics, University of Bielefeld, 33501 Bielefeld, Germany
- Address at time of publication: School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, People’s Republic of China
- Email: sunyuhua@nankai.edu.cn
- Received by editor(s): February 10, 2014
- Published electronically: March 18, 2015
- Communicated by: Joachim Krieger
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**143**(2015), 2969-2984 - MSC (2010): Primary 35J61; Secondary 58J05
- DOI: https://doi.org/10.1090/S0002-9939-2015-12705-0
- MathSciNet review: 3336621