On nonexistence of positive solutions of quasi-linear inequality on Riemannian manifolds
HTML articles powered by AMS MathViewer
- by Yuhua Sun
- Proc. Amer. Math. Soc. 143 (2015), 2969-2984
- DOI: https://doi.org/10.1090/S0002-9939-2015-12705-0
- Published electronically: March 18, 2015
- PDF | Request permission
Abstract:
We investigate the nonexistence of a positive solution to the following differential inequality: \begin{equation} div(|\nabla u|^{m-2}\nabla u)+u^{\sigma }\leq 0, \tag {1} \end{equation} on a noncompact complete Riemannian manifold, where $m>1$ and $\sigma >m-1$ are parameters. Our main result is as follows: If the volume of a geodesic ball of radius $r$ with a fixed center $x_0$ is bounded for large enough $r$ by $Cr^{p}\ln ^qr$, where $p=\frac {m\sigma }{\sigma -m+1}, q=\frac {m-1}{\sigma -m+1}$, then (1) has no positive weak solution.
We also show the sharpness of the parameters $p, q$.
References
- Robert Brooks, A relation between growth and the spectrum of the Laplacian, Math. Z. 178 (1981), no. 4, 501–508. MR 638814, DOI 10.1007/BF01174771
- S. Y. Cheng and S. T. Yau, Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math. 28 (1975), no. 3, 333–354. MR 385749, DOI 10.1002/cpa.3160280303
- G. Caristi, L. D’Ambrosio, and E. Mitidieri, Liouville theorems for some nonlinear inequalities, Tr. Mat. Inst. Steklova 260 (2008), no. Teor. Funkts. i Nelineĭn. Uravn. v Chastn. Proizvodn., 97–118; English transl., Proc. Steklov Inst. Math. 260 (2008), no. 1, 90–111. MR 2489506, DOI 10.1134/S0081543808010070
- G. Karisti, È. Mitidieri, and S. I. Pokhozhaev, Liouville theorems for quasilinear elliptic inequalities, Dokl. Akad. Nauk 424 (2009), no. 6, 741–747 (Russian); English transl., Dokl. Math. 79 (2009), no. 1, 118–124. MR 2513890, DOI 10.1134/S1064562409010360
- B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math. 34 (1981), no. 4, 525–598. MR 615628, DOI 10.1002/cpa.3160340406
- D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Springer, 1998.
- Alexander Grigor′yan, Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds, Bull. Amer. Math. Soc. (N.S.) 36 (1999), no. 2, 135–249. MR 1659871, DOI 10.1090/S0273-0979-99-00776-4
- Alexander Grigor’yan and Vladimir A. Kondratiev, On the existence of positive solutions of semilinear elliptic inequalities on Riemannian manifolds, Around the research of Vladimir Maz’ya. II, Int. Math. Ser. (N. Y.), vol. 12, Springer, New York, 2010, pp. 203–218. MR 2676174, DOI 10.1007/978-1-4419-1343-2_{8}
- Alexander Grigor’yan and Yuhua Sun, On nonnegative solutions of the inequality $\Delta u+u^\sigma \leq 0$ on Riemannian manifolds, Comm. Pure Appl. Math. 67 (2014), no. 8, 1336–1352. MR 3225632, DOI 10.1002/cpa.21493
- Ilkka Holopainen, A sharp $L^q$-Liouville theorem for $p$-harmonic functions, Israel J. Math. 115 (2000), 363–379. MR 1750009, DOI 10.1007/BF02810597
- Andrej A. Kon′kov, Comparison theorems for second-order elliptic inequalities, Nonlinear Anal. 59 (2004), no. 4, 583–608. MR 2094430, DOI 10.1016/j.na.2004.06.002
- Barnabé Pessoa Lima, José Fábio Bezerra Montenegro, and Newton Luís Santos, Eigenvalue estimates for the $p$-Laplace operator on manifolds, Nonlinear Anal. 72 (2010), no. 2, 771–781. MR 2579344, DOI 10.1016/j.na.2009.07.019
- Peter Lindqvist, On the equation $\textrm {div}\,(|\nabla u|^{p-2}\nabla u)+\lambda |u|^{p-2}u=0$, Proc. Amer. Math. Soc. 109 (1990), no. 1, 157–164. MR 1007505, DOI 10.1090/S0002-9939-1990-1007505-7
- È. Mitidieri and S. I. Pokhozhaev, Absence of global positive solutions of quasilinear elliptic inequalities, Dokl. Akad. Nauk 359 (1998), no. 4, 456–460 (Russian). MR 1668404
- È. Mitidieri, S. I. Pokhozhaev, Nonexistence of positive solutions for quasilinear elliptic problems on $\mathbb {R}^N$, Proc. Steklov Inst. Math., Vol.227(1999), 186-216.
- È. Mitidieri and S. I. Pokhozhaev, Absence of positive solutions for quasilinear elliptic problems in $\textbf {R}^N$, Tr. Mat. Inst. Steklova 227 (1999), no. Issled. po Teor. Differ. Funkts. Mnogikh Perem. i ee Prilozh. 18, 192–222 (Russian); English transl., Proc. Steklov Inst. Math. 4(227) (1999), 186–216. MR 1784317
- È. Mitidieri and S. I. Pokhozhaev, A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities, Tr. Mat. Inst. Steklova 234 (2001), 1–384 (Russian, with English and Russian summaries); English transl., Proc. Steklov Inst. Math. 3(234) (2001), 1–362. MR 1879326
- È. Mitidieri and S. I. Pokhozhaev, A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities (Nauka, Moscow, 2001), Tr. Math. Inst. im., V. A. Steklova, Ross. Akad. Nauk 234 [Proc. Steklov Inst. Math. 234 (2001)].
- Patrizia Pucci and James Serrin, A note on the strong maximum principle for elliptic differential inequalities, J. Math. Pures Appl. (9) 79 (2000), no. 1, 57–71. MR 1742565, DOI 10.1016/S0021-7824(99)00146-4
- Patrizia Pucci, Marco Rigoli, and James Serrin, Qualitative properties for solutions of singular elliptic inequalities on complete manifolds, J. Differential Equations 234 (2007), no. 2, 507–543. MR 2300666, DOI 10.1016/j.jde.2006.11.013
- Patrizia Pucci, James Serrin, and Henghui Zou, A strong maximum principle and a compact support principle for singular elliptic inequalities, Ricerche Mat. 48 (1999), no. suppl., 373–398. Papers in memory of Ennio De Giorgi (Italian). MR 1765693
- James Serrin, Local behavior of solutions of quasi-linear equations, Acta Math. 111 (1964), 247–302. MR 170096, DOI 10.1007/BF02391014
- J. Serrin, The Liouville theorem for homogeneous elliptic differential inequalities, J. Math. Sci. (N.Y.) 179 (2011), no. 1, 174–183. Problems in mathematical analysis. No. 61. MR 3014104, DOI 10.1007/s10958-011-0588-z
- Takaŝi Kusano and Akio Ogata, Existence and asymptotic behavior of positive solutions of second order quasilinear differential equations, Funkcial. Ekvac. 37 (1994), no. 2, 345–361. MR 1299870
- François de Thélin, Sur l’espace propre associé à la première valeur propre du pseudo-laplacien, C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), no. 8, 355–358 (French, with English summary). MR 860838
- Peter Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1984), no. 1, 126–150. MR 727034, DOI 10.1016/0022-0396(84)90105-0
Bibliographic Information
- Yuhua Sun
- Affiliation: Department of Mathematics, University of Bielefeld, 33501 Bielefeld, Germany
- Address at time of publication: School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, People’s Republic of China
- Email: sunyuhua@nankai.edu.cn
- Received by editor(s): February 10, 2014
- Published electronically: March 18, 2015
- Communicated by: Joachim Krieger
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 143 (2015), 2969-2984
- MSC (2010): Primary 35J61; Secondary 58J05
- DOI: https://doi.org/10.1090/S0002-9939-2015-12705-0
- MathSciNet review: 3336621