$P$-orderings of noncommutative rings
HTML articles powered by AMS MathViewer
- by Keith Johnson
- Proc. Amer. Math. Soc. 143 (2015), 3265-3279
- DOI: https://doi.org/10.1090/S0002-9939-2015-12377-5
- Published electronically: April 1, 2015
- PDF | Request permission
Abstract:
Let $K$ be a local field with valuation $\nu$, $D$ a division algebra over $K$ to which $\nu$ extends, $R$ the maximal order in $D$ with respect to $\nu$ and $S$ a subset of $R$. If $D[x]$ denotes the ring of polynomials over $D$ with $x$ a central variable, then the set of integer valued polynomials on $S$ is $\mathrm {Int}(S,R)=\{f(x)\in D[x]:f(S)\subseteq R\}$. If $D$ is commutative, then M. Bhargava showed how to construct a regular $R$-basis for this set by introducing the idea of a $P$-ordering of $S$. We show that this definition can be extended to the noncommutative case in such a way as to construct regular bases there also. We show how to extend methods developed to compute $P$-orderings in the commutative case and apply them to give a recursive formula for such an ordering for $D$ the rational quaternions and $S=R$ the Hurwitz quaternions localized at the prime $1+i$.References
- Manjul Bhargava, $P$-orderings and polynomial functions on arbitrary subsets of Dedekind rings, J. Reine Angew. Math. 490 (1997), 101–127. MR 1468927, DOI 10.1515/crll.1997.490.101
- Manjul Bhargava, Generalized factorials and fixed divisors over subsets of a Dedekind domain, J. Number Theory 72 (1998), no. 1, 67–75. MR 1643292, DOI 10.1006/jnth.1998.2220
- Paul-Jean Cahen and Jean-Luc Chabert, Integer-valued polynomials, Mathematical Surveys and Monographs, vol. 48, American Mathematical Society, Providence, RI, 1997. MR 1421321, DOI 10.1090/surv/048
- L. E. Dickson, Algebren und ihre Zahlentheorie, Oreil Fussli Verlag, Zurich, 1927.
- G. Gerboud, Polynômes à valeurs entières sur l’anneau des quaternions de Hurwitz, preprint, Amiens.
- Keith Johnson, $P$-orderings of finite subsets of Dedekind domains, J. Algebraic Combin. 30 (2009), no. 2, 233–253. MR 2525060, DOI 10.1007/s10801-008-0157-9
- Keith Johnson, Limits of characteristic sequences of integer-valued polynomials on homogeneous sets, J. Number Theory 129 (2009), no. 12, 2933–2942. MR 2560844, DOI 10.1016/j.jnt.2009.04.006
- T. Y. Lam and André Leroy, Wedderburn polynomials over division rings. I, J. Pure Appl. Algebra 186 (2004), no. 1, 43–76. MR 2025912, DOI 10.1016/S0022-4049(03)00125-7
- T. Y. Lam, A. Leroy, and A. Ozturk, Wedderburn polynomials over division rings. II, Noncommutative rings, group rings, diagram algebras and their applications, Contemp. Math., vol. 456, Amer. Math. Soc., Providence, RI, 2008, pp. 73–98. MR 2416145, DOI 10.1090/conm/456/08885
- T. Y. Lam, A general theory of Vandermonde matrices, Exposition. Math. 4 (1986), no. 3, 193–215. MR 880123
- T. Y. Lam, A first course in noncommutative rings, 2nd ed., Graduate Texts in Mathematics, vol. 131, Springer-Verlag, New York, 2001. MR 1838439, DOI 10.1007/978-1-4419-8616-0
- D. E. Littlewood and A. R. Richardson, Fermat’s Equation in Real Quaternions, Proc. London Math. Soc. (2) 32 (1931), no. 3, 235–240. MR 1575990, DOI 10.1112/plms/s2-32.1.235
- A. Ostrowski, Über Ganzwertige Polynome in algebraischen Zahlkorper, J. Reine Angew. Math. 149 (1919), 117–124.
- A. Ostrowski and G. Polya, Sur les polynômes à valeurs entières dans un corps algébrique, L’enseignement Mathématique 19 (1917), 323-24.
- G. Polya, Über Ganzwertige Polynome in algebraischen Zahlkorper, J. Reine Angew. Math. 149 (1919), 97–116.
- Nicholas J. Werner, Integer-valued polynomials over quaternion rings, J. Algebra 324 (2010), no. 7, 1754–1769. MR 2673759, DOI 10.1016/j.jalgebra.2010.06.024
Bibliographic Information
- Keith Johnson
- Affiliation: Department of Mathematics, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
- Email: johnson@mathstat.dal.ca
- Received by editor(s): November 5, 2012
- Received by editor(s) in revised form: September 25, 2013
- Published electronically: April 1, 2015
- Communicated by: Harm Derksen
- © Copyright 2015
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 143 (2015), 3265-3279
- MSC (2010): Primary 16S36; Secondary 13F20, 11C08
- DOI: https://doi.org/10.1090/S0002-9939-2015-12377-5
- MathSciNet review: 3348770