On symmetric powers of $\tau$-recurrent sequences and deformations of Eisenstein series
HTML articles powered by AMS MathViewer
- by Ahmad El-Guindy and Aleksandar Petrov
- Proc. Amer. Math. Soc. 143 (2015), 3303-3318
- DOI: https://doi.org/10.1090/proc/12406
- Published electronically: April 28, 2015
- PDF | Request permission
Abstract:
We prove the equality of several $\tau$-recurrent sequences, which were first considered by Pellarin and which have close connections to Drinfeld vectorial modular forms. Our result has several consequences: an $A$-expansion for the $l^\text {th}$ power ($1 \leq l \leq q$) of the deformation of the weight $2$ Eisenstein series; relations between Drinfeld modular forms with $A$-expansions; and a new proof of relations between special values of Pellarin $L$-series.References
- Vincent Bosser and Federico Pellarin, Drinfeld $A$-quasi-modular forms, Arithmetic and Galois theories of differential equations, Sémin. Congr., vol. 23, Soc. Math. France, Paris, 2011, pp. 63–88 (English, with English and French summaries). MR 3076079
- Ahmad El-Guindy and Matthew A. Papanikolas, Explicit formulas for Drinfeld modules and their periods, J. Number Theory 133 (2013), no. 6, 1864–1886. MR 3027943, DOI 10.1016/j.jnt.2012.10.013
- Ahmad El-Guindy and Matthew A. Papanikolas, Identities for Anderson generating functions for Drinfeld modules, Monatsh. Math. 173 (2014), no. 4, 471–493. MR 3177942, DOI 10.1007/s00605-013-0543-9
- Ernst-Ulrich Gekeler, On the coefficients of Drinfel′d modular forms, Invent. Math. 93 (1988), no. 3, 667–700. MR 952287, DOI 10.1007/BF01410204
- David Goss, Modular forms for $\textbf {F}_{r}[T]$, J. Reine Angew. Math. 317 (1980), 16–39. MR 581335, DOI 10.1515/crll.1980.317.16
- David Goss, $\pi$-adic Eisenstein series for function fields, Compositio Math. 41 (1980), no. 1, 3–38. MR 578049
- David Goss, Basic structures of function field arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 35, Springer-Verlag, Berlin, 1996. MR 1423131, DOI 10.1007/978-3-642-61480-4
- David Goss, On the $L$-series of F. Pellarin, J. Number Theory 133 (2013), no. 3, 955–962. MR 2997778, DOI 10.1016/j.jnt.2011.12.001
- Bartolomé López, A non-standard Fourier expansion for the Drinfeld discriminant function, Arch. Math. (Basel) 95 (2010), no. 2, 143–150. MR 2674250, DOI 10.1007/s00013-010-0148-7
- E. Lucas, Sur les congruences des nombres eulériens et les coefficients différentiels des functions trigonométriques suivant un module premier, Bull. Soc. Math. France 6 (1878), 49–54 (French). MR 1503769
- Federico Pellarin, $\tau$-recurrent sequence and modular forms, arXiv:1105.5819v3 (2011), preprint.
- Federico Pellarin, Values of certain $L$-series in positive characteristic, Ann. of Math. (2) 176 (2012), no. 3, 2055–2093. MR 2979866, DOI 10.4007/annals.2012.176.3.13
- Federico Pellarin, Estimating the order of vanishing at infinity of Drinfeld quasi-modular forms, J. Reine Angew. Math. 687 (2014), 1–42. MR 3176606, DOI 10.1515/crelle-2012-0048
- Federico Pellarin, Personal communication, (2013).
- Rudolph Perkins, Explicit formulae for L-values in finite characteristic, arXiv:1207.1753v1 (2012), preprint.
- Aleksandar Petrov, $A$-expansions of Drinfeld modular forms, J. Number Theory 133 (2013), no. 7, 2247–2266. MR 3035961, DOI 10.1016/j.jnt.2012.12.012
- W. A. Stein et al., Sage Mathematics Software (Version 4.8), The Sage Development Team, 2012, http://www.sagemath.org.
- Dinesh S. Thakur, Function field arithmetic, World Scientific Publishing Co., Inc., River Edge, NJ, 2004. MR 2091265, DOI 10.1142/9789812562388
Bibliographic Information
- Ahmad El-Guindy
- Affiliation: Department of Mathematics, Faculty of Science, Cairo University, Giza 12613, Egypt
- Address at time of publication: Texas A&M University at Qatar, Science Program, Doha 23874, Qatar
- MR Author ID: 736967
- Email: a.elguindy@gmail.com
- Aleksandar Petrov
- Affiliation: Texas A&M University at Qatar, Science Program, Doha 23874, Qatar
- Address at time of publication: Max Planck Institute for Mathematics, vivatsgasse 7, 53111 Bonn, Germany
- Email: apetrov@mpim-bonn.mpg.de
- Received by editor(s): May 12, 2013
- Received by editor(s) in revised form: October 13, 2013
- Published electronically: April 28, 2015
- Communicated by: Matthew A. Papanikolas
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 143 (2015), 3303-3318
- MSC (2010): Primary 11F52, 11G09, 11M38
- DOI: https://doi.org/10.1090/proc/12406
- MathSciNet review: 3348773