Generalized quasidisks and conformality II
HTML articles powered by AMS MathViewer
- by Chang-Yu Guo
- Proc. Amer. Math. Soc. 143 (2015), 3505-3517
- DOI: https://doi.org/10.1090/S0002-9939-2015-12449-5
- Published electronically: February 25, 2015
- PDF | Request permission
Abstract:
We introduce a weaker variant of the concept of three point property, which is equivalent to a non-linear local connectivity condition introduced by the author, Koskela, and Takkinen, sufficient to guarantee the extendability of a conformal map $f:\mathbb {D}\to \Omega$ to the entire plane as a homeomorphism of locally exponentially integrable distortion. Sufficient conditions for extendability to a homeomorphism of locally $p$-integrable distortion are also given.References
- Lars V. Ahlfors, Quasiconformal reflections, Acta Math. 109 (1963), 291–301. MR 154978, DOI 10.1007/BF02391816
- Lars V. Ahlfors, Lectures on quasiconformal mappings, 2nd ed., University Lecture Series, vol. 38, American Mathematical Society, Providence, RI, 2006. With supplemental chapters by C. J. Earle, I. Kra, M. Shishikura and J. H. Hubbard. MR 2241787, DOI 10.1090/ulect/038
- Kari Astala, James T. Gill, Steffen Rohde, and Eero Saksman, Optimal regularity for planar mappings of finite distortion, Ann. Inst. H. Poincaré C Anal. Non Linéaire 27 (2010), no. 1, 1–19. MR 2580501, DOI 10.1016/j.anihpc.2009.01.012
- Kari Astala, Tadeusz Iwaniec, and Gaven Martin, Elliptic partial differential equations and quasiconformal mappings in the plane, Princeton Mathematical Series, vol. 48, Princeton University Press, Princeton, NJ, 2009. MR 2472875
- A. Beurling and L. Ahlfors, The boundary correspondence under quasiconformal mappings, Acta Math. 96 (1956), 125–142. MR 86869, DOI 10.1007/BF02392360
- Jixiu Chen, Zhiguo Chen, and Chengqi He, Boundary correspondence under $\mu (z)$-homeomorphisms, Michigan Math. J. 43 (1996), no. 2, 211–220. MR 1398150, DOI 10.1307/mmj/1029005458
- Guy David, Solutions de l’équation de Beltrami avec $\|\mu \|_\infty =1$, Ann. Acad. Sci. Fenn. Ser. A I Math. 13 (1988), no. 1, 25–70 (French). MR 975566, DOI 10.5186/aasfm.1988.1303
- Frederick W. Gehring, Characteristic properties of quasidisks, Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics], vol. 84, Presses de l’Université de Montréal, Montreal, Que., 1982. MR 674294
- F. W. Gehring and K. Hag, Reflections on reflections in quasidisks, Papers on analysis, Rep. Univ. Jyväskylä Dep. Math. Stat., vol. 83, Univ. Jyväskylä, Jyväskylä, 2001, pp. 81–90. MR 1886615
- C. Y. Guo, Uniform continuity of quasiconformal mappings onto generalized John domains, Ann. Acad. Sci. Fenn. Math. 40 (2015), no. 1, 183-202, DOI:10:5186/aasfm.2015.4010.
- Chang-Yu Guo and Pekka Koskela, Generalized John disks, Cent. Eur. J. Math. 12 (2014), no. 2, 349–361. MR 3130689, DOI 10.2478/s11533-013-0344-3
- Chang-Yu Guo, Pekka Koskela, and Juhani Takkinen, Generalized quasidisks and conformality, Publ. Mat. 58 (2014), no. 1, 193–212. MR 3161514
- Stanislav Hencl and Pekka Koskela, Regularity of the inverse of a planar Sobolev homeomorphism, Arch. Ration. Mech. Anal. 180 (2006), no. 1, 75–95. MR 2211707, DOI 10.1007/s00205-005-0394-1
- David A. Herron and Pekka Koskela, Mappings of finite distortion: gauge dimension of generalized quasicircles, Illinois J. Math. 47 (2003), no. 4, 1243–1259. MR 2037001
- John G. Hocking and Gail S. Young, Topology, 2nd ed., Dover Publications, Inc., New York, 1988. MR 1016814
- Tadeusz Iwaniec, Pekka Koskela, and Jani Onninen, Mappings of finite distortion: compactness, Ann. Acad. Sci. Fenn. Math. 27 (2002), no. 2, 391–417. MR 1922197
- R. Kühnau, Möglichst konforme Spiegelung an einer Jordankurve, Jahresber. Deutsch. Math.-Verein. 90 (1988), no. 2, 90–109 (German). MR 939755
- Pekka Koskela, Jani Onninen, and Jeremy T. Tyson, Quasihyperbolic boundary conditions and capacity: Hölder continuity of quasiconformal mappings, Comment. Math. Helv. 76 (2001), no. 3, 416–435. MR 1854692, DOI 10.1007/PL00013214
- Pekka Koskela and Juhani Takkinen, Mappings of finite distortion: formation of cusps, Publ. Mat. 51 (2007), no. 1, 223–242. MR 2307153, DOI 10.5565/PUBLMAT_{5}1107_{1}0
- Pekka Koskela and Juhani Takkinen, A note to “Mappings of finite distortion: formation of cusps II” [MR2354095], Conform. Geom. Dyn. 14 (2010), 184–189. MR 2670509, DOI 10.1090/S1088-4173-2010-00211-0
- O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane, 2nd ed., Die Grundlehren der mathematischen Wissenschaften, Band 126, Springer-Verlag, New York-Heidelberg, 1973. Translated from the German by K. W. Lucas. MR 0344463
- Raimo Näkki and Jussi Väisälä, John disks, Exposition. Math. 9 (1991), no. 1, 3–43. MR 1101948
- Jani Onninen and Xiao Zhong, A note on mappings of finite distortion: the sharp modulus of continuity, Michigan Math. J. 53 (2005), no. 2, 329–335. MR 2152704, DOI 10.1307/mmj/1123090772
- Juhani Takkinen, Mappings of finite distortion: formation of cusps. II, Conform. Geom. Dyn. 11 (2007), 207–218. MR 2354095, DOI 10.1090/S1088-4173-07-00170-1
- Matti Vuorinen, Conformal geometry and quasiregular mappings, Lecture Notes in Mathematics, vol. 1319, Springer-Verlag, Berlin, 1988. MR 950174, DOI 10.1007/BFb0077904
- Saeed Zakeri, On boundary homeomorphisms of trans-quasiconformal maps of the disk, Ann. Acad. Sci. Fenn. Math. 33 (2008), no. 1, 241–260. MR 2386849
Bibliographic Information
- Chang-Yu Guo
- Affiliation: Department of Mathematics and Statistics, University of Jyväskylä, P.O. Box 35, FI-40014 University of Jyväskylä, Finland
- Email: changyu.c.guo@jyu.fi
- Received by editor(s): August 1, 2013
- Received by editor(s) in revised form: January 15, 2014
- Published electronically: February 25, 2015
- Additional Notes: The author was partially supported by the Academy of Finland grant 131477.
- Communicated by: Jeremy Tyson
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 143 (2015), 3505-3517
- MSC (2010): Primary 30C62, 30C65
- DOI: https://doi.org/10.1090/S0002-9939-2015-12449-5
- MathSciNet review: 3348792