A note on the Dziobek central configurations
HTML articles powered by AMS MathViewer
- by Jaume Llibre
- Proc. Amer. Math. Soc. 143 (2015), 3587-3591
- DOI: https://doi.org/10.1090/S0002-9939-2015-12502-6
- Published electronically: February 16, 2015
- PDF | Request permission
Abstract:
For the Newtonian $n$-body problem in $\mathbb {R}^{n-2}$ with $n\geq 3$ we prove that the following two statements are equivalent.
[(a)] Let $x$ be a Dziobek central configuration having one mass located at the center of mass.
[(b)] Let $x$ be a central configuration formed by $n-1$ equal masses located at the vertices of a regular $(n-2)$-simplex together with an arbitrary mass located at its barycenter.
References
- Alain Albouy, Symétrie des configurations centrales de quatre corps, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), no. 2, 217–220 (French, with English and French summaries). MR 1320359
- A. Albouy, Recherches sur le problème des n corps, Notes Scientifiques et Techniques du Bureau des Longitudes, Paris (1997), 78 pp.
- Alain Albouy and Alain Chenciner, Le problème des $n$ corps et les distances mutuelles, Invent. Math. 131 (1998), no. 1, 151–184 (French). MR 1489897, DOI 10.1007/s002220050200
- Alain Albouy and Vadim Kaloshin, Finiteness of central configurations of five bodies in the plane, Ann. of Math. (2) 176 (2012), no. 1, 535–588. MR 2925390, DOI 10.4007/annals.2012.176.1.10
- Alain Albouy and Jaume Llibre, Spatial central configurations for the $1+4$ body problem, Celestial mechanics (Evanston, IL, 1999) Contemp. Math., vol. 292, Amer. Math. Soc., Providence, RI, 2002, pp. 1–16. MR 1884890, DOI 10.1090/conm/292/04914
- O. Dziobek, Ueber einen merkwürdigen Fall des Vielkörperproblems, Astron. Nach. 152 (1900), 32–46.
- Yusuke Hagihara, Celestial mechanics, MIT Press, Cambridge, Mass.-London, 1970. Volume I: Dynamical principles and transformation theory. MR 0478835
- Marshall Hampton and Richard Moeckel, Finiteness of relative equilibria of the four-body problem, Invent. Math. 163 (2006), no. 2, 289–312. MR 2207019, DOI 10.1007/s00222-005-0461-0
- J.L. Lagrange, Essai sur le problème des trois corps, recueil des pièces qui ont remporté le prix de l’Académie Royale des Sciences de Paris, tome IX, 1772, reprinted in Ouvres, Vol. 6 (Gauthier–Villars, Paris, 1873), 229–324.
- Richard Moeckel, On central configurations, Math. Z. 205 (1990), no. 4, 499–517. MR 1082871, DOI 10.1007/BF02571259
- Richard Moeckel, Generic finiteness for Dziobek configurations, Trans. Amer. Math. Soc. 353 (2001), no. 11, 4673–4686. MR 1851188, DOI 10.1090/S0002-9947-01-02828-8
- Kenneth R. Meyer, Bifurcation of a central configuration, Celestial Mech. 40 (1987), no. 3-4, 273–282. MR 938404, DOI 10.1007/BF01235844
- F. R. Moulton, The straight line solutions of the problem of $n$ bodies, Ann. of Math. (2) 12 (1910), no. 1, 1–17. MR 1503509, DOI 10.2307/2007159
- Julian I. Palmore, Classifying relative equilibria. II, Bull. Amer. Math. Soc. 81 (1975), 489–491. MR 363076, DOI 10.1090/S0002-9904-1975-13794-3
- Donald G. Saari, On the role and the properties of $n$-body central configurations, Celestial Mech. 21 (1980), no. 1, 9–20. MR 564603, DOI 10.1007/BF01230241
- Dieter S. Schmidt, Central configurations in $\textbf {R}^2$ and $\textbf {R}^3$, Hamiltonian dynamical systems (Boulder, CO, 1987) Contemp. Math., vol. 81, Amer. Math. Soc., Providence, RI, 1988, pp. 59–76. MR 986257, DOI 10.1090/conm/081/986257
- S. Smale, Topology and mechanics. II. The planar $n$-body problem, Invent. Math. 11 (1970), 45–64. MR 321138, DOI 10.1007/BF01389805
- Aurel Wintner, The Analytical Foundations of Celestial Mechanics, Princeton Mathematical Series, vol. 5, Princeton University Press, Princeton, N. J., 1941. MR 0005824
- Zhihong Xia, Central configurations with many small masses, J. Differential Equations 91 (1991), no. 1, 168–179. MR 1106123, DOI 10.1016/0022-0396(91)90137-X
Bibliographic Information
- Jaume Llibre
- Affiliation: Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain
- MR Author ID: 115015
- ORCID: 0000-0002-9511-5999
- Email: jllibre@mat.uab.cat
- Received by editor(s): November 27, 2011
- Received by editor(s) in revised form: March 16, 2014
- Published electronically: February 16, 2015
- Additional Notes: The first author is partially supported by a MINECO/FEDER grant MTM2008-03437 and MTM2013-40998-P, an AGAUR grant number 2014SGR-568, an ICREA Academia, the grants FP7-PEOPLE-2012-IRSES 318999 and 316338, grant UNAB13-4E-1604.
- Communicated by: Yingfei Yi
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 143 (2015), 3587-3591
- MSC (2010): Primary 70F07; Secondary 70F15
- DOI: https://doi.org/10.1090/S0002-9939-2015-12502-6
- MathSciNet review: 3348799