A note on extreme points of $C^\infty$-smooth balls in polyhedral spaces
HTML articles powered by AMS MathViewer
- by A. J. Guirao, V. Montesinos and V. Zizler
- Proc. Amer. Math. Soc. 143 (2015), 3413-3420
- DOI: https://doi.org/10.1090/S0002-9939-2015-12617-2
- Published electronically: April 2, 2015
- PDF | Request permission
Abstract:
Morris (1983) proved that every separable Banach space $X$ that contains an isomorphic copy of $c_0$ has an equivalent strictly convex norm such that all points of its unit sphere $S_X$ are unpreserved extreme, i.e., they are no longer extreme points of $B_{X^{**}}$. We use a result of Hájek (1995) to prove that any separable infinite-dimensional polyhedral Banach space has an equivalent $C^{\infty }$-smooth and strictly convex norm with the same property as in Morris’ result. We additionally show that no point on the sphere of a $C^2$-smooth equivalent norm on a polyhedral infinite-dimensional space can be strongly extreme, i.e., there is no point $x$ on the sphere for which a sequence $(h_n)$ in $X$ with $\|h_n\|\not \to 0$ exists such that $\|x\pm h_n\|\to 1$.References
- Robert Deville, Gilles Godefroy, and Václav Zizler, Smoothness and renormings in Banach spaces, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 64, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1993. MR 1211634
- M. Fabián, J. H. M. Whitfield, and V. Zizler, Norms with locally Lipschitzian derivatives, Israel J. Math. 44 (1983), no. 3, 262–276. MR 693663, DOI 10.1007/BF02760975
- Marián Fabian, Petr Habala, Petr Hájek, Vicente Montesinos, and Václav Zizler, Banach space theory, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, Springer, New York, 2011. The basis for linear and nonlinear analysis. MR 2766381, DOI 10.1007/978-1-4419-7515-7
- V. P. Fonf, A property of Lindenstrauss-Phelps spaces, Funktsional. Anal. i Prilozhen. 13 (1979), no. 1, 79–80 (Russian). MR 527533
- V. P. Fonf, Some properties of polyhedral Banach spaces, Funktsional. Anal. i Prilozhen. 14 (1980), no. 4, 89–90 (Russian). MR 595744
- V. P. Fonf, Polyhedral Banach spaces, Mat. Zametki 30 (1981), no. 4, 627–634, 638 (Russian). MR 638435
- V. P. Fonf, J. Lindenstrauss, and R. R. Phelps, Infinite dimensional convexity, Handbook of the geometry of Banach spaces, Vol. I, North-Holland, Amsterdam, 2001, pp. 599–670. MR 1863703, DOI 10.1016/S1874-5849(01)80017-6
- Alan Gleit and Robert McGuigan, A note on polyhedral Banach spaces, Proc. Amer. Math. Soc. 33 (1972), 398–404. MR 295055, DOI 10.1090/S0002-9939-1972-0295055-4
- B. V. Godun, Bor-Luh Lin, and S. L. Troyanski, On the strongly extreme points of convex bodies in separable Banach spaces, Proc. Amer. Math. Soc. 114 (1992), no. 3, 673–675. MR 1070518, DOI 10.1090/S0002-9939-1992-1070518-5
- Gilles Godefroy, Boundaries of a convex set and interpolation sets, Math. Ann. 277 (1987), no. 2, 173–184. MR 886417, DOI 10.1007/BF01457357
- Gilles Godefroy, The Banach space $c_0$, Extracta Math. 16 (2001), no. 1, 1–25. MR 1837770
- Petr Hájek, Smooth norms that depend locally on finitely many coordinates, Proc. Amer. Math. Soc. 123 (1995), no. 12, 3817–3821. MR 1285993, DOI 10.1090/S0002-9939-1995-1285993-3
- Petr Hájek, Smooth functions on $c_0$, Israel J. Math. 104 (1998), 17–27. MR 1622271, DOI 10.1007/BF02897057
- P. Hájek, V. Montesinos, and V. Zizler, Geometry and Gâteaux smoothness in separable Banach spaces, Oper. Matrices 6 (2012), no. 2, 201–232. MR 2976113, DOI 10.7153/oam-06-15
- Zhibao Hu, Warren B. Moors, and Mark A. Smith, On a Banach space without a weak mid-point locally uniformly rotund norm, Bull. Austral. Math. Soc. 56 (1997), no. 2, 193–196. MR 1470070, DOI 10.1017/S0004972700030914
- Victor Klee, Some characterizations of convex polyhedra, Acta Math. 102 (1959), 79–107. MR 105651, DOI 10.1007/BF02559569
- Victor Klee, Polyhedral sections of convex bodies, Acta Math. 103 (1960), 243–267. MR 139073, DOI 10.1007/BF02546358
- S. Lajara, A. J. Pallarés, and S. Troyanski, Bidual renormings of Banach spaces, J. Math. Anal. Appl. 350 (2009), no. 2, 630–639. MR 2474800, DOI 10.1016/j.jmaa.2008.05.021
- Joram Lindenstrauss, Notes on Klee’s paper: “Polyhedral sections of convex bodies”, Israel J. Math. 4 (1966), 235–242. MR 209807, DOI 10.1007/BF02771638
- Bor-Luh Lin, Pei-Kee Lin, and S. L. Troyanski, Characterizations of denting points, Proc. Amer. Math. Soc. 102 (1988), no. 3, 526–528. MR 928972, DOI 10.1090/S0002-9939-1988-0928972-1
- A. Moltó, J. Orihuela, S. Troyanski, and M. Valdivia, Midpoint locally uniform rotundity and a decomposition method for renorming, Q. J. Math. 52 (2001), no. 2, 181–193. MR 1838362, DOI 10.1093/qjmath/52.2.181
- Peter Morris, Disappearance of extreme points, Proc. Amer. Math. Soc. 88 (1983), no. 2, 244–246. MR 695251, DOI 10.1090/S0002-9939-1983-0695251-5
- J. Pechanec, J. H. M. Whitfield, and V. Zizler, Norms locally dependent on finitely many coordinates, An. Acad. Brasil. Ciênc. 53 (1981), no. 3, 415–417. MR 663236
- Gerd Rodé, Superkonvexität und schwache Kompaktheit, Arch. Math. (Basel) 36 (1981), no. 1, 62–72 (German). MR 612238, DOI 10.1007/BF01223670
- Libor Veselý, Boundary of polyhedral spaces: an alternative proof, Extracta Math. 15 (2000), no. 1, 213–217. MR 1792990
Bibliographic Information
- A. J. Guirao
- Affiliation: Instituto de Matemática Pura y Aplicada. Universitat Politècnica de València, C/ Vera, s/n, 46020 Valencia, Spain
- Email: anguisa2@mat.upv.es
- V. Montesinos
- Affiliation: Instituto de Matemática Pura y Aplicada. Universitat Politècnica de València, C/ Vera, s/n, 46020 Valencia, Spain
- Email: vmontesinos@mat.upv.es
- V. Zizler
- Affiliation: Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Email: vasekzizler@gmail.com
- Received by editor(s): July 8, 2013
- Published electronically: April 2, 2015
- Additional Notes: The first author’s research was supported by Ministerio de Economía y Competitividad and FEDER under project MTM2011-25377 and the Universitat Politècnica de València.
The second author’s research was supported by Ministerio de Economía y Competitividad and FEDER under project MTM2011-22417 and the Universitat Politècnica de València. - Communicated by: Thomas Schlumprecht
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 143 (2015), 3413-3420
- MSC (2010): Primary 46B20; Secondary 46B03, 46B10, 46B22
- DOI: https://doi.org/10.1090/S0002-9939-2015-12617-2
- MathSciNet review: 3348784