Non-linear noise excitation and intermittency under high disorder
HTML articles powered by AMS MathViewer
- by Davar Khoshnevisan and Kunwoo Kim
- Proc. Amer. Math. Soc. 143 (2015), 4073-4083
- DOI: https://doi.org/10.1090/S0002-9939-2015-12517-8
- Published electronically: February 25, 2015
- PDF | Request permission
Abstract:
Consider the semilinear heat equation $\partial _t u = \partial ^2_x u + \lambda \sigma (u)\xi$ on the interval $[0 ,L]$ with Dirichlet zero-boundary condition and a nice non-random initial function, where the forcing $\xi$ is space-time white noise and $\lambda >0$ denotes the level of the noise. We show that, when the solution is intermittent [that is, when $\inf _z|\sigma (z)/z|>0$], the expected $L^2$-energy of the solution grows at least as $\exp \{c\lambda ^2\}$ and at most as $\exp \{c\lambda ^4\}$ as $\lambda \to \infty$. In the case that the Dirichlet boundary condition is replaced by a Neumann boundary condition, we prove that the $L^2$-energy of the solution is in fact of sharp exponential order $\exp \{c\lambda ^4\}$. We show also that, for a large family of one-dimensional randomly forced wave equations on $\mathbf {R}$, the energy of the solution grows as $\exp \{c\lambda \}$ as $\lambda \to \infty$. Thus, we observe the surprising result that the stochastic wave equation is, quite typically, significantly less noise-excitable than its parabolic counterparts.References
- M. Balázs, J. Quastel, and T. Seppäläinen, Fluctuation exponent of the KPZ/stochastic Burgers equation, J. Amer. Math. Soc. 24 (2011), no. 3, 683–708. MR 2784327, DOI 10.1090/S0894-0347-2011-00692-9
- P. H. Baxendale and B. L. Rozovskiĭ, Kinematic dynamo and intermittence in a turbulent flow, Geophys. Astrophys. Fluid Dynam. 73 (1993), no. 1-4, 33–60. Magnetohydrodynamic stability and dynamos (Chicago, IL, 1992). MR 1289018, DOI 10.1080/03091929308203618
- Lorenzo Bertini and Nicoletta Cancrini, The stochastic heat equation: Feynman-Kac formula and intermittence, J. Statist. Phys. 78 (1995), no. 5-6, 1377–1401. MR 1316109, DOI 10.1007/BF02180136
- B. Blümich (1987). White noise nonlinear system analysis in nuclear magnetic resonance spectroscopy, Progr. NMR Spectr. 19, 331–417.
- Julian Fernández Bonder and Pablo Groisman, Time-space white noise eliminates global solutions in reaction-diffusion equations, Phys. D 238 (2009), no. 2, 209–215. MR 2516340, DOI 10.1016/j.physd.2008.09.005
- René A. Carmona and S. A. Molchanov, Parabolic Anderson problem and intermittency, Mem. Amer. Math. Soc. 108 (1994), no. 518, viii+125. MR 1185878, DOI 10.1090/memo/0518
- Ivan Corwin, The Kardar-Parisi-Zhang equation and universality class, Random Matrices Theory Appl. 1 (2012), no. 1, 1130001, 76. MR 2930377, DOI 10.1142/S2010326311300014
- M. Cranston and S. Molchanov, Quenched to annealed transition in the parabolic Anderson problem, Probab. Theory Related Fields 138 (2007), no. 1-2, 177–193. MR 2288068, DOI 10.1007/s00440-006-0020-7
- M. Cranston, T. S. Mountford, and T. Shiga, Lyapunov exponent for the parabolic Anderson model with Lévy noise, Probab. Theory Related Fields 132 (2005), no. 3, 321–355. MR 2197105, DOI 10.1007/s00440-004-0346-y
- M. Cranston, T. S. Mountford, and T. Shiga, Lyapunov exponents for the parabolic Anderson model, Acta Math. Univ. Comenian. (N.S.) 71 (2002), no. 2, 163–188. MR 1980378
- Robert C. Dalang, Extending the martingale measure stochastic integral with applications to spatially homogeneous s.p.d.e.’s, Electron. J. Probab. 4 (1999), no. 6, 29. MR 1684157, DOI 10.1214/EJP.v4-43
- Robert C. Dalang and Carl Mueller, Some non-linear S.P.D.E.’s that are second order in time, Electron. J. Probab. 8 (2003), no. 1, 21. MR 1961163, DOI 10.1214/EJP.v8-123
- Frank den Hollander, Random polymers, Lecture Notes in Mathematics, vol. 1974, Springer-Verlag, Berlin, 2009. Lectures from the 37th Probability Summer School held in Saint-Flour, 2007. MR 2504175, DOI 10.1007/978-3-642-00333-2
- M. Foondun and M. Joseph (2014). Remarks on the nonlinear noise excitability of some stochastic heat equations, Preprint available at http://arxiv.org/pdf/1402.0084.pdf.
- Mohammud Foondun and Davar Khoshnevisan, Intermittence and nonlinear parabolic stochastic partial differential equations, Electron. J. Probab. 14 (2009), no. 21, 548–568. MR 2480553, DOI 10.1214/EJP.v14-614
- Jürgen Gärtner and Wolfgang König, The parabolic Anderson model, Interacting stochastic systems, Springer, Berlin, 2005, pp. 153–179. MR 2118574, DOI 10.1007/3-540-27110-4_{8}
- J. D. Gibbon and E. S. Titi, Cluster formation in complex multi-scale systems, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 461 (2005), no. 2062, 3089–3097. MR 2172218, DOI 10.1098/rspa.2005.1548
- Stanley Kaplan, On the growth of solutions of quasi-linear parabolic equations, Comm. Pure Appl. Math. 16 (1963), 305–330. MR 160044, DOI 10.1002/cpa.3160160307
- Mehran Kardar, Replica Bethe ansatz studies of two-dimensional interfaces with quenched random impurities, Nuclear Phys. B 290 (1987), no. 4, 582–602. MR 922846, DOI 10.1016/0550-3213(87)90203-3
- Kardar, M., G. Parisi, and Y.-C. Zhang (1986). Dynamic scaling of growing interfaces, Phys. Rev. Lett. 56(9), 889–892.
- Khoshnevisan, D. and K. Kim (2013). Non-linear noise excitation of intermittent stochastic PDEs and the topology of LCA groups, Ann. Probab., to appear, preprint available at http://arxiv.org/pdf/1302.3266.pdf.
- Andrew J. Majda, The random uniform shear layer: an explicit example of turbulent diffusion with broad tail probability distributions, Phys. Fluids A 5 (1993), no. 8, 1963–1970. MR 1228390, DOI 10.1063/1.858823
- Benoit B. Mandelbrot, The fractal geometry of nature, Schriftenreihe für den Referenten. [Series for the Referee], W. H. Freeman and Co., San Francisco, Calif., 1982. MR 665254
- Stanislav A. Molchanov, Ideas in the theory of random media, Acta Appl. Math. 22 (1991), no. 2-3, 139–282. MR 1111743, DOI 10.1007/BF00580850
- John B. Walsh, An introduction to stochastic partial differential equations, École d’été de probabilités de Saint-Flour, XIV—1984, Lecture Notes in Math., vol. 1180, Springer, Berlin, 1986, pp. 265–439. MR 876085, DOI 10.1007/BFb0074920
- Ya. B. Zel′dovich, A. A. Ruzmaĭkin, and D. D. Sokoloff, The almighty chance, World Scientific Lecture Notes in Physics, vol. 20, World Scientific Publishing Co., Inc., River Edge, NJ, 1990. Translated from the Russian by Anvar Shukurov. MR 1141627, DOI 10.1142/9789812799197
Bibliographic Information
- Davar Khoshnevisan
- Affiliation: Department of Mathematics, University of Utah, Salt Lake City, Utah 84112-0090
- MR Author ID: 302544
- Email: davar@math.utah.edu
- Kunwoo Kim
- Affiliation: Department of Mathematics, University of Utah, Salt Lake City, Utah 84112-0090
- Email: kkim@math.utah.edu
- Received by editor(s): September 1, 2013
- Received by editor(s) in revised form: March 28, 2014, and April 5, 2014
- Published electronically: February 25, 2015
- Additional Notes: Research was supported in part by the NSF grant DMS-1006903
- Communicated by: Mark M. Meerschaert
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 143 (2015), 4073-4083
- MSC (2010): Primary 60H15, 60H25; Secondary 35R60, 60K37
- DOI: https://doi.org/10.1090/S0002-9939-2015-12517-8
- MathSciNet review: 3359595