The average of the divisor function over values of a quadratic polynomial
HTML articles powered by AMS MathViewer
- by Sheng-Chi Liu and Riad Masri
- Proc. Amer. Math. Soc. 143 (2015), 4143-4160
- DOI: https://doi.org/10.1090/proc/12495
- Published electronically: June 5, 2015
- PDF | Request permission
Abstract:
We establish a uniform asymptotic formula with a power saving error term for the average of the divisor function $\tau (n):=\sum _{k|n}1$ over values of the quadratic polynomial $x^2 +|D|$ where $D < 0$ is a fundamental discriminant.References
- Ehud Moshe Baruch and Zhengyu Mao, A generalized Kohnen-Zagier formula for Maass forms, J. Lond. Math. Soc. (2) 82 (2010), no. 1, 1–16. MR 2669637, DOI 10.1112/jlms/jdq009
- Valentin Blomer, Non-vanishing of class group $L$-functions at the central point, Ann. Inst. Fourier (Grenoble) 54 (2004), no. 4, 831–847 (English, with English and French summaries). MR 2111013
- Valentin Blomer and Gergely Harcos, Hybrid bounds for twisted $L$-functions, J. Reine Angew. Math. 621 (2008), 53–79. MR 2431250, DOI 10.1515/CRELLE.2008.058
- D. A. Burgess, On character sums and $L$-series, Proc. London Math. Soc. (3) 12 (1962), 193–206. MR 132733, DOI 10.1112/plms/s3-12.1.193
- V. A. Bykovskiĭ, Spectral expansions of certain automorphic functions and their number-theoretic applications, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 134 (1984), 15–33 (Russian, with English summary). Automorphic functions and number theory, II. MR 741852
- J. B. Conrey and H. Iwaniec, The cubic moment of central values of automorphic $L$-functions, Ann. of Math. (2) 151 (2000), no. 3, 1175–1216. MR 1779567, DOI 10.2307/121132
- J.-M. Deshouillers and H. Iwaniec, Kloosterman sums and Fourier coefficients of cusp forms, Invent. Math. 70 (1982/83), no. 2, 219–288. MR 684172, DOI 10.1007/BF01390728
- W. Duke, J. Friedlander, and H. Iwaniec, Class group $L$-functions, Duke Math. J. 79 (1995), no. 1, 1–56. MR 1340293, DOI 10.1215/S0012-7094-95-07901-0
- W. Duke, J. B. Friedlander, and H. Iwaniec, Weyl sums for quadratic roots, Int. Math. Res. Not. IMRN 11 (2012), 2493–2549. MR 2926988, DOI 10.1093/imrn/rnr112
- John Friedlander and Henryk Iwaniec, Opera de cribro, American Mathematical Society Colloquium Publications, vol. 57, American Mathematical Society, Providence, RI, 2010. MR 2647984, DOI 10.1090/coll/057
- J. B. Friedlander and H. Iwaniec, Small representations by indefinite ternary quadratic forms, Number theory and related fields, Springer Proc. Math. Stat., vol. 43, Springer, New York, 2013, pp. 157–164. MR 3081039, DOI 10.1007/978-1-4614-6642-0_{7}
- Jeffrey Hoffstein and Paul Lockhart, Coefficients of Maass forms and the Siegel zero, Ann. of Math. (2) 140 (1994), no. 1, 161–181. With an appendix by Dorian Goldfeld, Hoffstein and Daniel Lieman. MR 1289494, DOI 10.2307/2118543
- Christopher Hooley, On the number of divisors of a quadratic polynomial, Acta Math. 110 (1963), 97–114. MR 153648, DOI 10.1007/BF02391856
- Henryk Iwaniec, Small eigenvalues of Laplacian for $\Gamma _0(N)$, Acta Arith. 56 (1990), no. 1, 65–82. MR 1067982, DOI 10.4064/aa-56-1-65-82
- Henryk Iwaniec and Emmanuel Kowalski, Analytic number theory, American Mathematical Society Colloquium Publications, vol. 53, American Mathematical Society, Providence, RI, 2004. MR 2061214, DOI 10.1090/coll/053
- Svetlana Katok and Peter Sarnak, Heegner points, cycles and Maass forms, Israel J. Math. 84 (1993), no. 1-2, 193–227. MR 1244668, DOI 10.1007/BF02761700
- Henry H. Kim, Functoriality for the exterior square of $\textrm {GL}_4$ and the symmetric fourth of $\textrm {GL}_2$, J. Amer. Math. Soc. 16 (2003), no. 1, 139–183. With appendix 1 by Dinakar Ramakrishnan and appendix 2 by Kim and Peter Sarnak. MR 1937203, DOI 10.1090/S0894-0347-02-00410-1
- W. Kohnen and D. Zagier, Values of $L$-series of modular forms at the center of the critical strip, Invent. Math. 64 (1981), no. 2, 175–198. MR 629468, DOI 10.1007/BF01389166
- Serge Lang, Elliptic functions, 2nd ed., Graduate Texts in Mathematics, vol. 112, Springer-Verlag, New York, 1987. With an appendix by J. Tate. MR 890960, DOI 10.1007/978-1-4612-4752-4
- Riad Masri, The asymptotic distribution of traces of cycle integrals of the $j$-function, Duke Math. J. 161 (2012), no. 10, 1971–2000. MR 2954622, DOI 10.1215/00127094-1645711
- Nicolas Templier, Heegner points and Eisenstein series, Forum Math. 23 (2011), no. 6, 1135–1158. MR 2855045, DOI 10.1515/FORM.2011.041
- Nicolas Templier, A nonsplit sum of coefficients of modular forms, Duke Math. J. 157 (2011), no. 1, 109–165. MR 2783929, DOI 10.1215/00127094-2011-003
- Nicolas Templier and Jacob Tsimerman, Non-split sums of coefficients of $GL(2)$-automorphic forms, Israel J. Math. 195 (2013), no. 2, 677–723. MR 3096570, DOI 10.1007/s11856-012-0112-2
- E. C. Titchmarsh, The theory of the Riemann zeta-function, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1986. Edited and with a preface by D. R. Heath-Brown. MR 882550
- D. Zagier, Modular forms whose Fourier coefficients involve zeta-functions of quadratic fields, Modular functions of one variable, VI (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976) Lecture Notes in Math., Vol. 627, Springer, Berlin, 1977, pp. 105–169. MR 0485703
- D. Zagier, Eisenstein series and the Riemann zeta function, Automorphic forms, representation theory and arithmetic (Bombay, 1979), Tata Inst. Fund. Res. Studies in Math., vol. 10, Springer-Verlag, Berlin-New York, 1981, pp. 275–301. MR 633666
Bibliographic Information
- Sheng-Chi Liu
- Affiliation: Department of Mathematics, Washington State University, Pullman, Washington 99164-3113
- Email: scliu@math.wsu.edu
- Riad Masri
- Affiliation: Department of Mathematics, Mailstop 3368, Texas A&M University, College Station, Texas 77843-3368
- Email: masri@math.tamu.edu
- Received by editor(s): October 16, 2013
- Received by editor(s) in revised form: March 3, 2014
- Published electronically: June 5, 2015
- Communicated by: Ken Ono
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 143 (2015), 4143-4160
- MSC (2010): Primary 11M41
- DOI: https://doi.org/10.1090/proc/12495
- MathSciNet review: 3373915