Holomorphic $L^2$ torsion without determinant class condition
HTML articles powered by AMS MathViewer
- by Guangxiang Su
- Proc. Amer. Math. Soc. 143 (2015), 4513-4524
- DOI: https://doi.org/10.1090/S0002-9939-2015-12565-8
- Published electronically: March 17, 2015
- PDF | Request permission
Abstract:
In this paper, we extend the holomorphic $L^{2}$ torsion introduced by Carey, Farber and Mathai to the case without the determinant class condition. We compute the metric variation formula for the holomorphic $L^{2}$ torsion in our case. We also study the asymptotics of the holomorphic $L^{2}$ torsion associated with a power of a positive line bundle.References
- Jean-Michel Bismut and Éric Vasserot, The asymptotics of the Ray-Singer analytic torsion associated with high powers of a positive line bundle, Comm. Math. Phys. 125 (1989), no. 2, 355–367. MR 1016875
- Maxim Braverman, Alan Carey, Michael Farber, and Varghese Mathai, $L^2$ torsion without the determinant class condition and extended $L^2$ cohomology, Commun. Contemp. Math. 7 (2005), no. 4, 421–462. MR 2166660, DOI 10.1142/S0219199705001866
- D. Burghelea, L. Friedlander, T. Kappeler, and P. McDonald, Analytic and Reidemeister torsion for representations in finite type Hilbert modules, Geom. Funct. Anal. 6 (1996), no. 5, 751–859. MR 1415762, DOI 10.1007/BF02246786
- A. Carey, M. Farber, and V. Mathai, Determinant lines, von Neumann algebras and $L^2$ torsion, J. Reine Angew. Math. 484 (1997), 153–181. MR 1437302
- A. Carey, M. Farber, and V. Mathai, Correspondences, von Neumann algebras and holomorphic $L^2$ torsion, Canad. J. Math. 52 (2000), no. 4, 695–736. MR 1767399, DOI 10.4153/CJM-2000-030-7
- Alan L. Carey and Varghese Mathai, $L^2$-torsion invariants, J. Funct. Anal. 110 (1992), no. 2, 377–409. MR 1194991, DOI 10.1016/0022-1236(92)90036-I
- Michael Farber, von Neumann categories and extended $L^2$-cohomology, $K$-Theory 15 (1998), no. 4, 347–405. MR 1656223, DOI 10.1023/A:1007778529430
- John Lott, Heat kernels on covering spaces and topological invariants, J. Differential Geom. 35 (1992), no. 2, 471–510. MR 1158345
- Xiaonan Ma and George Marinescu, Holomorphic Morse inequalities and Bergman kernels, Progress in Mathematics, vol. 254, Birkhäuser Verlag, Basel, 2007. MR 2339952, DOI 10.1007/978-3-7643-8115-8
- Varghese Mathai, $L^2$-analytic torsion, J. Funct. Anal. 107 (1992), no. 2, 369–386. MR 1172031, DOI 10.1016/0022-1236(92)90114-X
- Varghese Mathai and Daniel Quillen, Superconnections, Thom classes, and equivariant differential forms, Topology 25 (1986), no. 1, 85–110. MR 836726, DOI 10.1016/0040-9383(86)90007-8
- D. Quillen, Determinants of Cauchy-Riemann operators over a Riemann surface. Funct. Anal. Appl. 14 (1985), 31–34.
- Daniel Quillen, Superconnections and the Chern character, Topology 24 (1985), no. 1, 89–95. MR 790678, DOI 10.1016/0040-9383(85)90047-3
- D. B. Ray and I. M. Singer, Analytic torsion for complex manifolds, Ann. of Math. (2) 98 (1973), 154–177. MR 383463, DOI 10.2307/1970909
- Mikhail Shubin, De Rham theorem for extended $L^2$-cohomology, Voronezh Winter Mathematical Schools, Amer. Math. Soc. Transl. Ser. 2, vol. 184, Amer. Math. Soc., Providence, RI, 1998, pp. 217–231. MR 1729936, DOI 10.1090/trans2/184/15
- Weiping Zhang, An extended Cheeger-Müller theorem for covering spaces, Topology 44 (2005), no. 6, 1093–1131. MR 2168571, DOI 10.1016/j.top.2005.04.001
Bibliographic Information
- Guangxiang Su
- Affiliation: Chern Institute of Mathematics and LPMC, Nankai University, Tianjin 300071, People’s Republic of China
- Email: guangxiangsu@nankai.edu.cn
- Received by editor(s): June 6, 2014
- Received by editor(s) in revised form: June 12, 2014
- Published electronically: March 17, 2015
- Additional Notes: The author was supported by “the Fundamental Research Funds for the Central Universities 65011541” and NSFC 11101219
- Communicated by: Varghese Mathai
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 143 (2015), 4513-4524
- MSC (2010): Primary 58J52
- DOI: https://doi.org/10.1090/S0002-9939-2015-12565-8
- MathSciNet review: 3373949