On the spacings between the successive zeros of the Laguerre polynomials
HTML articles powered by AMS MathViewer
- by Stéphane Chrétien and Sébastien Darses
- Proc. Amer. Math. Soc. 143 (2015), 4383-4388
- DOI: https://doi.org/10.1090/proc/12574
- Published electronically: April 21, 2015
- PDF | Request permission
Abstract:
We propose a simple uniform lower bound on the spacings between the successive zeros of the Laguerre polynomials $L_n^{(\alpha )}$ for all $\alpha >-1$. Our bound is sharp regarding the order of dependency on $n$ and $\alpha$ in various ranges. In particular, we recover the orders given in a work of Ahmed, Laforgia and Muldoon (1982) for $\alpha \in (-1,1]$.References
- S. Ahmed, A. Laforgia, and M. E. Muldoon, On the spacing of the zeros of some classical orthogonal polynomials, J. London Math. Soc. (2) 25 (1982), no. 2, 246–252. MR 653383, DOI 10.1112/jlms/s2-25.2.246
- Kanti B. Datta and B. M. Mohan, Orthogonal functions in systems and control, Advanced Series in Electrical and Computer Engineering, vol. 9, World Scientific Publishing Co., Inc., River Edge, NJ, 1995. MR 1412142, DOI 10.1142/2476
- Holger Dette and Lorens A. Imhof, Uniform approximation of eigenvalues in Laguerre and Hermite $\beta$-ensembles by roots of orthogonal polynomials, Trans. Amer. Math. Soc. 359 (2007), no. 10, 4999–5018. MR 2320657, DOI 10.1090/S0002-9947-07-04191-8
- Dimitar K. Dimitrov and Geno P. Nikolov, Sharp bounds for the extreme zeros of classical orthogonal polynomials, J. Approx. Theory 162 (2010), no. 10, 1793–1804. MR 2728047, DOI 10.1016/j.jat.2009.11.006
- J. Faraut, Logarithmic Potential Theory, Orthogonal Polynomials, and Random Matrices, CIMPA School, Hammamet, September 2011. Lecture notes available at http://www.math.jussieu.fr/ faraut/CIMPA-2011-JF.pdf.
- Willi Freeden and Martin Gutting, Special functions of mathematical (geo-)physics, Applied and Numerical Harmonic Analysis, Birkhäuser/Springer Basel AG, Basel, 2013. MR 3027119, DOI 10.1007/978-3-0348-0563-6
- Luigi Gatteschi, Asymptotics and bounds for the zeros of Laguerre polynomials: a survey, J. Comput. Appl. Math. 144 (2002), no. 1-2, 7–27. MR 1909981, DOI 10.1016/S0377-0427(01)00549-0
- Herbert W. Hethcote, Bounds for zeros of some special functions, Proc. Amer. Math. Soc. 25 (1970), 72–74. MR 255909, DOI 10.1090/S0002-9939-1970-0255909-X
- S. Finch, http://www.people.fas.harvard.edu/$\sim$sfinch/csolve/bs.pdf
- Mourand E. H. Ismail and Xin Li, Bound on the extreme zeros of orthogonal polynomials, Proc. Amer. Math. Soc. 115 (1992), no. 1, 131–140. MR 1079891, DOI 10.1090/S0002-9939-1992-1079891-5
- Ilia Krasikov, On extreme zeros of classical orthogonal polynomials, J. Comput. Appl. Math. 193 (2006), no. 1, 168–182. MR 2228713, DOI 10.1016/j.cam.2005.05.029
- I. V. Krasovsky, Asymptotic distribution of zeros of polynomials satisfying difference equations, J. Comput. Appl. Math. 150 (2003), no. 1, 56–70. MR 1946882, DOI 10.1016/S0377-0427(02)00564-2
- Gábor Szegő, Orthogonal polynomials, 4th ed., American Mathematical Society Colloquium Publications, Vol. XXIII, American Mathematical Society, Providence, R.I., 1975. MR 0372517
- Roman Vershynin, Introduction to the non-asymptotic analysis of random matrices, Compressed sensing, Cambridge Univ. Press, Cambridge, 2012, pp. 210–268. MR 2963170
Bibliographic Information
- Stéphane Chrétien
- Affiliation: Laboratoire de Mathématiques, UMR 6623, Université de Franche-Comté, 16 route de Gray, 25030 Besancon, France
- Email: stephane.chretien@univ-fcomte.fr
- Sébastien Darses
- Affiliation: I2M, UMR 6632, Aix-Marseille Université, Technopôle Château-Gombert, 39 rue Joliot Curie, 13453 Marseille Cedex 13, France — and — Université de Franche-Comté, 16 route de Gray, 25030 Besancon, France
- MR Author ID: 778355
- Email: sebastien.darses@univ-amu.fr
- Received by editor(s): March 10, 2014
- Received by editor(s) in revised form: June 20, 2014
- Published electronically: April 21, 2015
- Communicated by: Sergei K. Suslov
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 143 (2015), 4383-4388
- MSC (2010): Primary 33C45; Secondary 26C10
- DOI: https://doi.org/10.1090/proc/12574
- MathSciNet review: 3373936