ON THE COLLECTION OF BAIRE CLASS ONE FUNCTIONS ON THE IRRATIONALS

ROMAN POL

(Communicated by Mirna Džamonja)

Abstract. The Baire class one fan over the irrationals \(\mathbb{N}^\mathbb{N} \) is the space \(S(\mathbb{N}^\mathbb{N}) = (\mathbb{N}^\mathbb{N} \times \mathbb{N}) \cup \{ \infty \} \), where basic neighbourhoods of \(\infty \) are epigraphs of the first Baire class functions \(f : \mathbb{N}^\mathbb{N} \to \mathbb{N} \), augmented by \(\infty \), and the remaining points are isolated; \(S(\mathbb{N}) = (\mathbb{N} \times \mathbb{N}) \cup \{ \infty \} \) is the standard countable sequential fan. We prove that \(S(\mathbb{N}^\mathbb{N}) \times S(\mathbb{N}) \) has countable tightness: in this product, whenever \(p \in A \), then \(p \in B \) for some countable \(B \subset A \).

1. Introduction

Let \(\mathbb{N} \) be the set of natural numbers in the real line \(\mathbb{R} \) and let \(\mathbb{N}^\mathbb{N} \) be the countable product of \(\mathbb{N} \), homeomorphic to the irrationals.

Given a metrizable space \(X \), the Baire class one fan over \(X \) is the space \(S(X) = (X \times \mathbb{N}) \cup \{ \infty \} \), where basic neighbourhoods of the point \(\infty \) are the epigraphs \(\{(x,n) : n \geq f(x)\} \) of the first Baire class functions \(f : X \to \mathbb{N} \), augmented by \(\infty \), and the points in \(X \times \mathbb{N} \) are isolated. Note that for any infinite discrete \(X \), \(S(X) \) is the standard sequential fan of cardinality \(|X| \), cf. [EGKTT].

Let us recall that a space \(E \) has countable tightness if, whenever \(x \in A \) in \(E \), there is a countable set \(B \subset A \) with \(x \in B \), cf. [Ar]. The aim of this note is to prove the following theorem.

Theorem 1.1. The product \(S(\mathbb{N}^\mathbb{N}) \times S(\mathbb{N}) \) of the Baire class one fan over the irrationals and the countable sequential fan has countable tightness.

G. Gruenhage [Gr] proved that for a discrete space \(X \), the product of the sequential fans \(S(X) \times S(\mathbb{N}) \) has countable tightness if and only if \(|X| < b \leq 2^\omega \), cf. [Kun], III.1.11.

We shall prove in fact that if \(X \) is a metrizable separable space all whose closed subspaces are Baire, then \(S(X) \times S(\mathbb{N}) \) has countable tightness (however, in contrast with discrete spaces, for each such uncountable \(X \), the fan \(S(X) \) is not sequential, cf. Comment 4.1).

Let us also mention that there are subspaces \(Y \) of \(\mathbb{R} \) such that \(S(Y) \times S(\mathbb{N}) \) fails to have countable tightness, cf. Comment 4.2.

Remark 1.2. Theorem 1.1 also implies the following statement: each set in \((\mathbb{N}^\mathbb{N} \times \mathbb{R}) \times (\mathbb{N} \times \mathbb{R}) \) intersecting every product of the epigraph of a Baire class one function...
Let, cf. (1):

\[f : \mathbb{N}^\mathbb{N} \to \mathbb{R} \]

and the epigraph of a function \(\varphi : \mathbb{N} \to \mathbb{N} \) contains a countable subset with this property.

In fact, for any function of Baire class one \(f : \mathbb{N}^\mathbb{N} \to \mathbb{R} \), if \(f_n : \mathbb{N}^\mathbb{N} \to \mathbb{R} \) are continuous functions converging pointwise to \(f \), \(g(x) = \min\{m \in \mathbb{N} : f_n(x) \leq m \text{ for all } n\} \) is a lower-semicontinuous function with \(f \leq g \).

2. The main lemma

The following notion comes in handy in our proof of Theorem 1.1.

Definition 2.1. Let \(X \) be a separable metrizable space. A set \(A \subset X \times \mathbb{N} \) is nowhere bounded on \(L \subset X \), if \(L \neq \emptyset \) and for each nonempty relatively open set \(W \in L \) and \(n \in \mathbb{N} \), \(A \cap (W \times [n, +\infty)) \neq \emptyset \).

Let

\(\pi_X : X \times \mathbb{N} \to X \), \(\pi_X(x, n) = x \),

be the projection. Then \(A \subset X \times \mathbb{N} \) is nowhere bounded on \(L \neq \emptyset \) if and only if all projections \(\pi_X(A \cap (L \times [n, +\infty)) \) are dense in \(L \).

Lemma 2.2. Let \(X \) be a separable metrizable space all whose closed subspaces are Baire and let \(A \subset X \times \mathbb{N} \) be nowhere bounded on \(L \subset X \). Then there is a countable set \(B \subset A \cap (L \times \mathbb{N}) \) intersecting every epigraph in \(X \times \mathbb{N} \) of Baire class one functions \(f : X \to \mathbb{N} \).

Proof. For each \(n \in \mathbb{N} \) one can choose a countable set \(B_n \subset (A \cap (L \times [n, +\infty)) \) such that \(\pi_X(B_n) \) is dense in \(L \), and let \(B = \bigcup_n B_n \).

Let \(f : X \to \mathbb{N} \) be any Baire class one function. Since \(F = L \) is Baire, \(f \) restricted to \(F \) has a point of continuity, cf. \([\text{Kur}], \S\ 34, \text{VII}, \) and therefore there is a nonempty relatively open set \(U \) in \(L \) such that \(\sup\{f(x) : x \in U\} \leq n \). Since \(\pi_X(B_n) \cap U \neq \emptyset \), one can pick \((x, m) \in B_n \) with \(x \in U \) and \(m \geq n \). Then \((x, m) \) is in the epigraph of \(f \).

The following lemma is a key observation in our reasonings. To get Theorem 1.1 we need this result only for zero-dimensional spaces, where a justification is somewhat simpler. However, we aim at Proposition 3.1, which is more general than Theorem 1.1.

Lemma 2.3. Let \(X \) be a separable metrizable space and \(A \subset X \times \mathbb{N} \) be such that \(\infty \in \overline{A} \text{ in the Baire class one fan } S(X) \) (cf. Section 1). Then there is a closed nonempty set \(K \subset X \) such that \(A \) is nowhere bounded on \(K \) and \(\infty \not\in \overline{A} \cap ((X \setminus K) \times \mathbb{N}) \).

Proof. Let, cf. (1),

\(Y_n = \pi_X(A \cap [n, +\infty)) \).

If each \(Y_n \) is dense in \(X \), \(A \) is nowhere bounded on \(X \) and one can take \(K = X \). Otherwise, we proceed by a (possibly transfinite) exhaustion process as follows.

We start from a nonempty open set \(U_1 \) disjoint from some \(Y_{n(1)} \). Assume that we have defined open sets \(U_\alpha \) in \(X \) and \(n(\alpha) \in \mathbb{N}, \alpha < \xi, \) where \(\xi \) is a countable ordinal, such that

\(U_\alpha \subset \overline{U_\beta} \text{ for } \alpha < \beta < \xi, \)

\(H_\alpha = U_\alpha \setminus \bigcup_{\beta < \alpha} U_\beta \neq \emptyset, \)

\(H_\alpha \cap Y_{n(\alpha)} = \emptyset, \text{ for } \alpha < \xi. \)
We claim that
\[\alpha \notin \mathcal{A} \cap (\bigcup_{\alpha < \xi} U_\alpha \times \mathbb{N}). \]
To see this, let us fix a metric on X bounded by 1, and let us consider the closed sets
\[H_\alpha = \{ x \in H_\alpha : \frac{1}{n+1} \leq \text{dist} (x,X \setminus U_\alpha) \leq \frac{1}{n} \}, \]
and their open neighbourhoods
\[W_\alpha = \{ x \in X : \text{dist} (x,H_\alpha) < \frac{1}{n+1} \} \subset U_\alpha. \]
For each $x \in X$ and fixed $\alpha < \xi$, x belongs to W_α only for finitely many n, and for each fixed n, if $\alpha \neq \beta$, then dist $(H_\alpha,H_\beta) \geq \frac{1}{n+1}$.

Let $\tau : \{ \alpha : \alpha < \xi \} \to \mathbb{N}$ be an injection and let
\[V_\alpha = W_\alpha \setminus \bigcup \{ H_\beta m : m \leq \tau(\alpha) \text{ and } \beta \neq \alpha \}. \]
Then $H_\alpha \subset V_\alpha$, hence $\bigcup_{\alpha,n} V_\alpha = \bigcup_{\alpha} H_\alpha = \bigcup_{\alpha} U_\alpha$, cf. (3).

Given $x \in \bigcup_{\alpha} U_\alpha$, let us first pick β with $x \in H_\beta$, and then m with $x \in H_\beta m$. If $x \in V_\alpha$, then either $\beta = \alpha$ or else $\beta \neq \alpha$ and $\tau(\alpha) < m$.

Since for each fixed α there are only finitely many n with $x \in V_\alpha$, we conclude that there are only finitely many pairs (α, n) with $x \in V_\alpha$.

Now, let us define $f : X \to \mathbb{N}$ by, cf. (4),
\[f(x) = \begin{cases} \max \{ n(\alpha) : x \in V_\alpha \}, & \text{if } x \in \bigcup_{\alpha < \xi} U_\alpha, \\ 0, & \text{if } x \notin \bigcup_{\alpha < \xi} U_\alpha. \end{cases} \]
Then f is lower-semicontinuous and we shall check that the epigraph of f is disjoint from $\mathcal{A} \cap (\bigcup_{\alpha < \xi} U_\alpha \times \mathbb{N})$. Let $x \in \bigcup_{\alpha < \xi} U_\alpha$. Then, cf. (3), $x \in H_\alpha$ for some $\alpha < \xi$ and $n \in \mathbb{N}$, hence by (6), $f(x) \geq n(\alpha)$. By (2) and (4), if $(x,k) \in A$, then $k < n(\alpha)$, i.e., $k < f(x)$.

Having verified (5), we consider $F_\xi = X \setminus \bigcup_{\alpha < \xi} U_\alpha$ and we repeat the first step of the construction (note that, since $\infty \notin \mathcal{A}$, $F_\xi \neq \emptyset$). If all $Y_n \cap F_\xi$ are dense in F_ξ, cf. (2), A is nowhere bounded on F_ξ and we let $K = F_\xi$. Otherwise, we extend the induction, taking a nonempty, relatively open set G in F_ξ disjoint from some $Y_n(\xi)$, and we define $U_\xi = G \cup \bigcup_{\alpha < \xi} U_\alpha$.

The inductive process must terminate on some countable ordinal ξ, and then, as we have already noticed, $K = F_\xi$ is a required set. \hfill \Box

Remark 2.4. From Lemma 2.2 and Lemma 2.3 we infer immediately that for any separable metrizable space X whose all closed subspaces are Baire, the Baire class one fan $S(X)$ has countable tightness.

3. Proof of Theorem 1.1

We shall prove the following proposition which is more general than Theorem 1.1.

Proposition 3.1. Let $S(X)$ be the Baire class one fan over the metrizable separable space X all whose closed subspaces are Baire. Then the product $S(X) \times S(\mathbb{N})$ has countable tightness.
Proof. Since, by Remark 2.4, \(S(X) \) has countable tightness, it is enough to show that, whenever

\[
(7) \quad A \subset (X \times \mathbb{N}) \times (\mathbb{N} \times \mathbb{N}) \text{ and } (\infty, \infty) \in \overline{A}
\]

in \(S(X) \times S(\mathbb{N}) \), then \((\infty, \infty)\) is also in the closure of some countable subset of \(A \).

For each \(t \in \mathbb{N} \times \mathbb{N} \), let

\[
(8) \quad A(t) = \{ u \in X \times \mathbb{N} : (u, t) \in A \},
\]

and let

\[
(9) \quad T = \{ t \in \mathbb{N} \times \mathbb{N} : \infty \in \overline{A(t)} \}.
\]

We shall consider two possibilities.

Case (A). \(\infty \in \overline{T} \) in \(S(\mathbb{N}) \).

Then, since \(S(X) \) has countable tightness, for each \(t \in T \) one can choose a countable set \(C(t) \subset A(t) \) with \(\infty \in C(t) \), and then \((\infty, \infty) \in \bigcup \{ C(t) \times \{ t \} : t \in \mathbb{N} \times \mathbb{N} \} \).

Case (B). \(\infty \not\in \overline{T} \) in \(S(\mathbb{N}) \).

Let, for \(\varphi \in \mathbb{N}^{\mathbb{N}} \), \(\text{epi}(\varphi) = \{ (n, m) : m \geq \varphi(n) \} \).

Case (B) means that

\[
(10) \quad T \cap \text{epi}(\gamma) = \emptyset \text{ for some } \gamma \in \mathbb{N}^{\mathbb{N}}.
\]

Let, cf. (8), for \(\varphi \in \mathbb{N}^{\mathbb{N}} \),

\[
(11) \quad A(\varphi) = \bigcup \{ A(t) : t \in \text{epi}(\varphi) \} \subset X \times \mathbb{N}.
\]

Since \((\infty, \infty) \in \overline{A} \), for each \(\varphi \in \mathbb{N}^{\mathbb{N}} \), \(\infty \in \overline{A(\varphi)} \) in \(S(X) \), and by Lemma 2.3, there exists a closed nonempty set \(K(\varphi) \) in \(X \) such that

\[
(12) \quad A(\varphi) \text{ is nowhere bounded on } K(\varphi),
\]

\[
(13) \quad \infty \not\in \overline{A(\varphi) \cap ((X \setminus K(\varphi)) \times \mathbb{N})}.
\]

For \(\varphi, \psi \in \mathbb{N}^{\mathbb{N}} \), \(\varphi \leq^* \psi \) means that \(\varphi(n) \leq \psi(n) \) for all but finitely many \(n \), cf. [Kun], III.1.10. Let us check that, for the ordinal \(\gamma \) chosen in (10),

\[
(14) \quad \text{if } \varphi \leq^* \psi \text{ and } \gamma \leq \psi, \text{ then } K(\psi) \subset K(\varphi).
\]

Aiming at a contradiction, assume that \(L = K(\psi) \setminus K(\varphi) \neq \emptyset \). Then \(L \) is relatively open in \(K(\psi) \) and by (12), \(A(\psi) \) is nowhere bounded on \(L \), cf. Section 2, and by Lemma 2.2, \(\infty \in \overline{A(\psi) \cap (L \times \mathbb{N})} \). Since \(\text{epi}(\psi) \setminus \text{epi}(\varphi) \) is a finite subset of \(\text{epi}(\gamma) \), by (9) and (10), \(\infty \not\in \bigcup \{ A(t) : t \in \text{epi}(\psi) \setminus \text{epi}(\varphi) \} \). In effect, we conclude that \(\infty \in \overline{A(\varphi) \cap (L \times \mathbb{N})} \), cf. (11), which contradicts (13).

From (14) we infer that there is some \(\sigma \in \mathbb{N}^{\mathbb{N}} \) such that

\[
(15) \quad K(\sigma) = K(\varphi), \text{ whenever } \sigma \leq^* \varphi \text{ and } \gamma \leq \varphi.
\]

Indeed, if there were no such \(\sigma \), using (14) and the fact that each countable set in \(\mathbb{N}^{\mathbb{N}} \) is bounded with respect to \(\leq^* \), cf. [Kun], III.1.12, we could define a strictly decreasing sequence of type \(\omega_1 \) of closed sets \(K(\varphi_1) \supset \cdots \supset K(\varphi_{\xi}) \supset \cdots \) corresponding to \(\varphi_1 \leq^* \cdots \leq^* \varphi_{\xi} \leq^* \cdots, \gamma \leq \varphi_{\xi}, \xi < \omega_1 \). This, however, is impossible, \(X \) being separable metrizable, cf. [Kur], § 24.II.

With (15) at hand, we are ready to pick a countable subset of \(A \) whose closure contains \((\infty, \infty)\).
For each \(t \in \mathbb{N} \times \mathbb{N} \) and \(n \in \mathbb{N} \), let

\[
(16) \quad A(t, n) = A(t) \cap (K(\sigma) \times [n, +\infty)),
\]

cf. (8), and let us choose

\[
(17) \quad B(t, n) \subset A(t, n) \text{ countable, } \pi_X(A(t, n)) \subset \pi_X(B(t, n)).
\]

We check that

\[
(18) \quad (\infty, \infty) \in \bigcup \{B(t, n) \times \{t\} : t \in \mathbb{N} \times \mathbb{N}, n \in \mathbb{N}\}.
\]

To that end let us fix a neighbourhood \(\text{epi}(\varphi) \cup \{\infty\} \) of \(\infty \) in \(\mathbb{S}(\mathbb{N}) \) with \(\varphi \geq \sigma \) and \(\varphi \geq \gamma \) (such neighbourhoods form a basis of \(\infty \) in \(\mathbb{S}(\mathbb{N}) \)). We shall verify that

\[
B(\varphi) = \bigcup \{B(t, n) : t \in \text{epi}(\varphi), n \in \mathbb{N}\}
\]

is nowhere bounded on \(K(\sigma) \).

Indeed, let \(U \) be a nonempty relatively open set in \(K(\sigma) \) and \(n \in \mathbb{N} \). Since

\[
K(\sigma) = K(\sigma), \text{ cf. (15), } A(\varphi) \text{ is nowhere bounded on } K(\sigma), \text{ cf. (12), hence, for some } t \in \text{epi}(\varphi), \pi_X(A(t, n)) \cap U \neq \emptyset, \text{ cf. (16) and Definition 2.1, and by (17), } \pi_X(B(t, n)) \cap U \neq \emptyset.
\]

Now, since \(B(\varphi) \) is nowhere bounded on \(K(\sigma) \), \(\infty \in \overline{B(\varphi)} \), by Lemma 2.2. It follows that for any neighbourhood \(V \) of \(\infty \) in \(\mathbb{S}(X) \) and \(\varphi : \mathbb{N} \rightarrow \mathbb{N} \) with \(\varphi \geq \sigma, \varphi \geq \gamma \), some \(B(t, n) \times \{t\} \) intersects \(V \times \text{epi}(\varphi) \), which demonstrates (18) and ends the proof. \(\square \)

4. Comments

4.1. The fan \(\mathbb{S}(\mathbb{N}^\mathbb{N}) \) is not sequential. Let \(q_1, q_2, \ldots \) be a countable dense set in \(\mathbb{N}^\mathbb{N} \), and let \(a_n = (q_n, n), A = \{a_n : n = 1, 2, \ldots\} \subset \mathbb{S}(\mathbb{N}^\mathbb{N}) \). By Lemma 2.2, \(\infty \in \overline{A} \). However, if \(K \subset \mathbb{S}(\mathbb{N}^\mathbb{N}) \) is compact, then \(K \cap A \) is finite, and, in particular, no sequence of points of \(A \) converges to \(\infty \).

Indeed, if \(K \cap A \) is infinite, we can pick \(n_1 < n_2 < \ldots \) so that \(a_{n_k} \in K \) and \(\{q_{n_k} : k = 1, 2, \ldots\} \) has at most one accumulation point in \(\mathbb{N}^\mathbb{N} \). Then, there is a Baire class one function \(f : \mathbb{N}^\mathbb{N} \rightarrow \mathbb{N} \) such that \(f(q_{n_k}) > n_k \) and hence no \(a_{n_k} \) belongs to the epigraph of \(f \). It follows that the set \(\{a_{n_k} : k = 1, 2, \ldots\} \subset K \) is closed and discrete in \(\mathbb{S}(\mathbb{N}^\mathbb{N}) \), hence \(K \) is not compact.

This reasoning shows in fact that \(\mathbb{S}(X) \) is not sequential for any separable metrizable \(X \) whose all closed subspaces are Baire.

4.2. The fan \(\mathbb{S}(X) \) over \(\lambda \)-sets. Let us recall that \(X \subset \mathbb{R} \) is a \(\lambda \)-set if all countable subsets of \(X \) are \(G_\delta \)-sets in \(X \), cf. [Kur], §4,III, [Mi].

A result of A. Leiderman and the author [LP], combined with the Gruenhage theorem cited in Section 1, show that if \(X \) is a \(\lambda \)-set of cardinality \(\mathfrak{b} \) (such sets exist by a theorem of Rothberger, cf. [VL]), then \(\mathbb{S}(X) \times \mathbb{S}(\mathbb{N}) \) fails to have countable tightness.

4.3. The fan \(\mathbb{S}(X) \) over \(Q \)-sets. Let \(X \subset \mathbb{R} \) be a \(Q \)-set, i.e., all subsets of \(X \) are \(G_\delta \)-sets in \(X \), cf. [Mi]. Then every function \(f : X \rightarrow \mathbb{N} \) is of the first Baire class, cf. [Kur], §3, hence \(\mathbb{S}(X) \) is the sequential fan. In particular, by the result of Gruenhage cited in Section 1, for any \(Q \)-set \(X \) of cardinality less than \(\mathfrak{b} \), \(\mathbb{S}(X) \times \mathbb{S}(\mathbb{N}) \) has countable tightness.

4.4. The squares of fans. G. Gruenhage [Gr] proved that for any uncountable discrete \(X \), the square \(\mathbb{S}(X) \times \mathbb{S}(X) \) fails to have countable tightness. This is also the case for any uncountable \(\lambda \)-set in the real line, cf. [LP].

We do not know, however, if the square \(\mathbb{S}(\mathbb{N}^\mathbb{N}) \times \mathbb{S}(\mathbb{N}^\mathbb{N}) \) has countable tightness.
References

Mathematics Institute, University of Warsaw, ul Banacha 2, PL 02-097, Warsaw, Poland

E-mail address: R.Pol@mimuw.edu.pl