Quadratic non-residues in short intervals
HTML articles powered by AMS MathViewer
- by Sergei V. Konyagin and Igor E. Shparlinski
- Proc. Amer. Math. Soc. 143 (2015), 4261-4269
- DOI: https://doi.org/10.1090/S0002-9939-2015-12584-1
- Published electronically: March 31, 2015
- PDF | Request permission
Abstract:
We use the Burgess bound and combinatorial sieve to obtain an upper bound on the number of primes $p$ in a dyadic interval $[Q,2Q]$ for which a given interval $[u+1,u+\psi (Q)]$ does not contain a quadratic non-residue modulo $p$. The bound is non-trivial for any function $\psi (Q)\to \infty$ as $Q\to \infty$. This is an analogue of the well-known estimates on the smallest quadratic non-residue modulo $p$ on average over primes $p$, which corresponds to the choice $u=0$.References
- D. A. Burgess, The distribution of quadratic residues and non-residues, Mathematika 4 (1957), 106–112. MR 93504, DOI 10.1112/S0025579300001157
- Rainer Dietmann, Christian Elsholtz, and Igor E. Shparlinski, On gaps between quadratic non-residues in the Euclidean and Hamming metrics, Indag. Math. (N.S.) 24 (2013), no. 4, 930–938. MR 3124809, DOI 10.1016/j.indag.2013.02.005
- Pál Erdős, Remarks on number theory. I, Mat. Lapok 12 (1961), 10–17 (Hungarian, with English and Russian summaries). MR 144869
- Michael Filaseta and Ognian Trifonov, On gaps between squarefree numbers. II, J. London Math. Soc. (2) 45 (1992), no. 2, 215–221. MR 1171549, DOI 10.1112/jlms/s2-45.2.215
- M. Z. Garaev, S. V. Konyagin, and Yu. V. Malykhin, Asymptotics of the sum of powers of distances between power residues modulo a prime, Tr. Mat. Inst. Steklova 276 (2012), no. Teoriya Chisel, Algebra i Analiz, 83–95 (Russian, with Russian summary); English transl., Proc. Steklov Inst. Math. 276 (2012), no. 1, 77–89. MR 2986111, DOI 10.1134/S0081543812010075
- S. W. Graham and C. J. Ringrose, Lower bounds for least quadratic nonresidues, Analytic number theory (Allerton Park, IL, 1989) Progr. Math., vol. 85, Birkhäuser Boston, Boston, MA, 1990, pp. 269–309. MR 1084186
- Henryk Iwaniec and Emmanuel Kowalski, Analytic number theory, American Mathematical Society Colloquium Publications, vol. 53, American Mathematical Society, Providence, RI, 2004. MR 2061214, DOI 10.1090/coll/053
- Hugh L. Montgomery and Robert C. Vaughan, Multiplicative number theory. I. Classical theory, Cambridge Studies in Advanced Mathematics, vol. 97, Cambridge University Press, Cambridge, 2007. MR 2378655
- Gérald Tenenbaum, Introduction to analytic and probabilistic number theory, Cambridge Studies in Advanced Mathematics, vol. 46, Cambridge University Press, Cambridge, 1995. Translated from the second French edition (1995) by C. B. Thomas. MR 1342300
- D. I. Tolev, On the distribution of $r$-tuples of squarefree numbers in short intervals, Int. J. Number Theory 2 (2006), no. 2, 225–234. MR 2240227, DOI 10.1142/S179304210600053X
Bibliographic Information
- Sergei V. Konyagin
- Affiliation: Steklov Mathematical Institute, 8, Gubkin Street, Moscow, 119991, Russia
- MR Author ID: 188475
- Email: konyagin@mi.ras.ru
- Igor E. Shparlinski
- Affiliation: Department of Pure Mathematics, University of New South Wales, Sydney, NSW 2052, Australia
- MR Author ID: 192194
- Email: igor.shparlinski@unsw.edu.au
- Received by editor(s): November 27, 2013
- Received by editor(s) in revised form: June 21, 2014
- Published electronically: March 31, 2015
- Communicated by: Matthew A. Papanikolas
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 143 (2015), 4261-4269
- MSC (2010): Primary 11A15, 11L40
- DOI: https://doi.org/10.1090/S0002-9939-2015-12584-1
- MathSciNet review: 3373925