Bounds on volume growth of geodesic balls for Einstein warped products
HTML articles powered by AMS MathViewer
- by A. Barros, R. Batista and E. Ribeiro Jr.
- Proc. Amer. Math. Soc. 143 (2015), 4415-4422
- DOI: https://doi.org/10.1090/S0002-9939-2015-12606-8
- Published electronically: April 1, 2015
- PDF | Request permission
Abstract:
The purpose of this note is to provide some volume estimates for Einstein warped products similar to a classical result due to Calabi and Yau for complete Riemannian manifolds with nonnegative Ricci curvature. To do so, we make use of the approach of quasi-Einstein manifolds which is directly related to Einstein warped products. In particular, we present an obstruction for the existence of such a class of manifolds.References
- D. Bakry and M. Ledoux, Sobolev inequalities and Myers’s diameter theorem for an abstract Markov generator, Duke Math. J. 85 (1996), no. 1, 253–270. MR 1412446, DOI 10.1215/S0012-7094-96-08511-7
- A. Barros and E. Ribeiro Jr., Integral formulae on quasi-Einstein manifolds and applications, Glasg. Math. J. 54 (2012), no. 1, 213–223. MR 2862399, DOI 10.1017/S0017089511000565
- Arthur L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10, Springer-Verlag, Berlin, 1987. MR 867684, DOI 10.1007/978-3-540-74311-8
- E. Calabi, On manifolds with non-negative Ricci curvature II. Notices Amer. Math. Soc., 22 (1975) A205.
- Jeffrey Case, Yu-Jen Shu, and Guofang Wei, Rigidity of quasi-Einstein metrics, Differential Geom. Appl. 29 (2011), no. 1, 93–100. MR 2784291, DOI 10.1016/j.difgeo.2010.11.003
- Jeffrey S. Case, The nonexistence of quasi-Einstein metrics, Pacific J. Math. 248 (2010), no. 2, 277–284. MR 2741248, DOI 10.2140/pjm.2010.248.277
- Huai-Dong Cao, Recent progress on Ricci solitons, Recent advances in geometric analysis, Adv. Lect. Math. (ALM), vol. 11, Int. Press, Somerville, MA, 2010, pp. 1–38. MR 2648937
- Huai-Dong Cao and Detang Zhou, On complete gradient shrinking Ricci solitons, J. Differential Geom. 85 (2010), no. 2, 175–185. MR 2732975
- Justin Corvino, Scalar curvature deformation and a gluing construction for the Einstein constraint equations, Comm. Math. Phys. 214 (2000), no. 1, 137–189. MR 1794269, DOI 10.1007/PL00005533
- Chenxu He, Peter Petersen, and William Wylie, On the classification of warped product Einstein metrics, Comm. Anal. Geom. 20 (2012), no. 2, 271–311. MR 2928714, DOI 10.4310/CAG.2012.v20.n2.a3
- Dong-Soo Kim and Young Ho Kim, Compact Einstein warped product spaces with nonpositive scalar curvature, Proc. Amer. Math. Soc. 131 (2003), no. 8, 2573–2576. MR 1974657, DOI 10.1090/S0002-9939-03-06878-3
- Xiang-Dong Li, Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds, J. Math. Pures Appl. (9) 84 (2005), no. 10, 1295–1361 (English, with English and French summaries). MR 2170766, DOI 10.1016/j.matpur.2005.04.002
- Frank Morgan, Manifolds with density, Notices Amer. Math. Soc. 52 (2005), no. 8, 853–858. MR 2161354
- Ovidiu Munteanu and Natasa Sesum, On gradient Ricci solitons, J. Geom. Anal. 23 (2013), no. 2, 539–561. MR 3023848, DOI 10.1007/s12220-011-9252-6
- Ovidiu Munteanu and Jiaping Wang, Analysis of weighted Laplacian and applications to Ricci solitons, Comm. Anal. Geom. 20 (2012), no. 1, 55–94. MR 2903101, DOI 10.4310/CAG.2012.v20.n1.a3
- Stefano Pigola, Michele Rimoldi, and Alberto G. Setti, Remarks on non-compact gradient Ricci solitons, Math. Z. 268 (2011), no. 3-4, 777–790. MR 2818729, DOI 10.1007/s00209-010-0695-4
- Zhongmin Qian, Estimates for weighted volumes and applications, Quart. J. Math. Oxford Ser. (2) 48 (1997), no. 190, 235–242. MR 1458581, DOI 10.1093/qmath/48.2.235
- Michele Rimoldi, A remark on Einstein warped products, Pacific J. Math. 252 (2011), no. 1, 207–218. MR 2862148, DOI 10.2140/pjm.2011.252.207
- Lin Feng Wang, On noncompact $\tau$-quasi-Einstein metrics, Pacific J. Math. 254 (2011), no. 2, 449–464. MR 2900025, DOI 10.2140/pjm.2011.254.449
- G. Wei and W. Wylie, Comparison geometry for the smooth metric measure spaces. In ICCM. Vol. II. Higher Education Press. (2007).
- Shing Tung Yau, Some function-theoretic properties of complete Riemannian manifold and their applications to geometry, Indiana Univ. Math. J. 25 (1976), no. 7, 659–670. MR 417452, DOI 10.1512/iumj.1976.25.25051
Bibliographic Information
- A. Barros
- Affiliation: Universidade Federal do Ceará - UFC, Departamento de Matemática, Campus do Pici, Av. Humberto Monte, Bloco 914, 60455-760-Fortaleza/CE, Brazil
- Email: abbarros@mat.ufc.br
- R. Batista
- Affiliation: Universidade Federal do Piauí - UFPI, Departamento de Matemática, Campus Petrônio Portella, 64049-550-Teresina /PI, Brazil
- Email: rmarcolino@ufpi.edu.br
- E. Ribeiro Jr.
- Affiliation: Universidade Federal do Ceará - UFC, Departamento de Matemática, Campus do Pici, Av. Humberto Monte, Bloco 914, 60455-760-Fortaleza/CE, Brazil
- Address at time of publication: Department of Mathematics, Lehigh University, Bethlehem, Pennsylvania 18015
- Email: ernani@mat.ufc.br
- Received by editor(s): May 2, 2014
- Received by editor(s) in revised form: May 3, 2014, and July 4, 2014
- Published electronically: April 1, 2015
- Additional Notes: The first and second authors were partially supported by grants from CNPq/Brazil
The third author was partially supported by grants from PJP-FUNCAP/Brazil and CNPq/Brazil - Communicated by: Lei Ni
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 143 (2015), 4415-4422
- MSC (2010): Primary 53C25, 53C20, 53C21; Secondary 53C65
- DOI: https://doi.org/10.1090/S0002-9939-2015-12606-8
- MathSciNet review: 3373940