AR-components for generalized Beilinson algebras
HTML articles powered by AMS MathViewer
- by Julia Worch
- Proc. Amer. Math. Soc. 143 (2015), 4271-4281
- DOI: https://doi.org/10.1090/S0002-9939-2015-12621-4
- Published electronically: March 31, 2015
- PDF | Request permission
Abstract:
We show that the generalized $W$-modules defined in 2013 determine $\mathbb {Z}A_{\infty }$-components in the Auslander-Reiten quiver $\Gamma (n,r)$ of the generalized Beilinson algebra $B(n,r)$, $n \geq 3$. These components entirely consist of modules with the constant Jordan type property. We arrive at this result by interpreting $B(n,r)$ as an iterated one-point extension of the $r$-Kronecker algebra $\mathcal {K}_r$, which enables us to generalize findings concerning the Auslander-Reiten quiver $\Gamma (\mathcal {K}_r)$ presented in 2013 to $\Gamma (n,r)$.References
- Ibrahim Assem, Daniel Simson, and Andrzej Skowroński, Elements of the representation theory of associative algebras. Vol. 1, London Mathematical Society Student Texts, vol. 65, Cambridge University Press, Cambridge, 2006. Techniques of representation theory. MR 2197389, DOI 10.1017/CBO9780511614309
- Maurice Auslander, Idun Reiten, and Sverre O. Smalø, Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics, vol. 36, Cambridge University Press, Cambridge, 1995. MR 1314422, DOI 10.1017/CBO9780511623608
- A. A. Beĭlinson, Coherent sheaves on $\textbf {P}^{n}$ and problems in linear algebra, Funktsional. Anal. i Prilozhen. 12 (1978), no. 3, 68–69 (Russian). MR 509388
- Jon F. Carlson, Eric M. Friedlander, and Julia Pevtsova, Modules of constant Jordan type, J. Reine Angew. Math. 614 (2008), 191–234. MR 2376286, DOI 10.1515/CRELLE.2008.006
- Jon F. Carlson, Eric M. Friedlander, and Andrei Suslin, Modules for $\Bbb Z/p\times \Bbb Z/p$, Comment. Math. Helv. 86 (2011), no. 3, 609–657. MR 2803855, DOI 10.4171/CMH/236
- Karin Erdmann, Blocks of tame representation type and related algebras, Lecture Notes in Mathematics, vol. 1428, Springer-Verlag, Berlin, 1990. MR 1064107, DOI 10.1007/BFb0084003
- R. Farnsteiner, Categories of modules given by varieties of $p$-nilpotent operators. Preprint: arXiv:1110.2706.
- O. Kerner, Private communication, June 2013.
- Claus Michael Ringel, Finite dimensional hereditary algebras of wild representation type, Math. Z. 161 (1978), no. 3, 235–255. MR 501169, DOI 10.1007/BF01214506
- Claus Michael Ringel, Tame algebras and integral quadratic forms, Lecture Notes in Mathematics, vol. 1099, Springer-Verlag, Berlin, 1984. MR 774589, DOI 10.1007/BFb0072870
- Daniel Simson and Andrzej Skowroński, Elements of the representation theory of associative algebras. Vol. 3, London Mathematical Society Student Texts, vol. 72, Cambridge University Press, Cambridge, 2007. Representation-infinite tilted algebras. MR 2382332
- Julia Worch, Categories of modules for elementary abelian $p$-groups and generalized Beilinson algebras, J. Lond. Math. Soc. (2) 88 (2013), no. 3, 649–668. MR 3145125, DOI 10.1112/jlms/jdt039
- J. Worch, Module categories and Auslander-Reiten theory for generalized Beilinson algebras. http://macau.uni-kiel.de/receive/dissertationdiss00013419, 2013.
Bibliographic Information
- Julia Worch
- Affiliation: Mathematisches Seminar, Christian-Albrechts-Universität zu Kiel, Ludewig-Meyn-Str. 4, 24098 Kiel, Germany
- Email: jworch@gmx.net
- Received by editor(s): January 23, 2014
- Received by editor(s) in revised form: June 22, 2014
- Published electronically: March 31, 2015
- Additional Notes: The author’s research was partly supported by the D.F.G. priority program SPP 1388 “Darstellungstheorie”
- Communicated by: Birge Huisgen-Zimmermann
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 143 (2015), 4271-4281
- MSC (2010): Primary 16G20, 16G70; Secondary 16S90, 16S37
- DOI: https://doi.org/10.1090/S0002-9939-2015-12621-4
- MathSciNet review: 3373926